

# **Tutorial Series**

# Wellensysteme – Starter 1-Stufen Planeten-Getriebe

# Inhaltsverzeichnis

| 1. VOI WOI t                             | Z  |
|------------------------------------------|----|
| 1.1 Ziel des Tutorials                   | 2  |
| 1.2 Software Version                     | 2  |
| 1.3 Hinweise                             | 2  |
| 2. MESYS Wellensysteme                   | 2  |
| 2.1 Allgemein                            | 2  |
| 2.2 Beschreibung                         | 3  |
| 3. Software Handbuch                     |    |
| 3.1 Online-Handbuch                      |    |
| 3.2 Handbuch als PDF                     | 3  |
| 4. Projekt eines Wellensystems           | 4  |
| 4.1 Inhalt des Tutorials                 | 4  |
| 4.2 Ausgangslage                         | 4  |
| 4.2.1 Anforderungen                      | 4  |
| 4.2.2 Definition Bauteile                | 4  |
| 4.3 Abbildung                            | 6  |
| 4.3.1 Erstellen des Files                | 6  |
| 4.3.2 Gruppen                            | 6  |
| 4.3.3 Komponenten                        | 7  |
| 4.3.4 Verzahnungen                       | 9  |
| 4.3.5 Stützen                            | 11 |
| 4.3.6 Belastungen                        | 14 |
| 4.3.7 Schmierstoff                       | 15 |
| 5. Berechnung                            | 15 |
| 5.1 Einstellungen                        | 15 |
| 5.2 Berechnungsschritt                   | 16 |
| 6 Resultate                              | 16 |
| 6.1 Resultateübersicht                   |    |
| 6.2 Übersicht Zahnradverbindungen        | 16 |
| 6.2.1 Zahnradberechnung                  |    |
| 6.2.2 Resultate Zahnradverbindungen      | 17 |
| 6.3 Lastkollektive                       | 17 |
| 6.4 Grafische Darstellung von Resultaten | 17 |
| 6.4.1 Übersicht                          | 17 |
| 6.4.2 Menü Grafiken                      |    |
| 6.4.3 Export                             | 19 |

\_



# **1. Vorwort** 1.1 Ziel des Tutorials

Dieses Starter-Tutorial zu Wellenberechnungs-Extension <u>MESYS Wellensysteme</u> hat das Ziel, User mit den Funktionalitäten der Software bekanntzumachen und weitere Eindrücke über die Mächtigkeit der rechnerischen Betrachtung von Aspekten aus dem Einsatz von parallelen Wellen zu erhalten. Im Sinne einer Einschränkung, werden hier nur Themen und Einstellungen erwähnt oder behandelt, welche auch einer angenommenen Vertrautheit mit dem Produkt und den Übungsinhalten gerecht werden. Wenden Sie sich ungehindert an <u>MESYS</u>, sollten in der Verwendung der Software Fragen auftauchen.

## **1.2 Software Version**

Dieses Tutorial wurde mit MESYS Wellenberechnung Version 12-2024 vom 11.02.2025 erstellt.

### 1.3 Hinweise

Ein blauer Pfeil bedeutet eine Aufforderung an den Leser. Ein grüner Pfeil bedeutet eine Schlussfolgerung oder Wirkung.

# 2. MESYS Wellensysteme

### 2.1 Allgemein

Um sich ein Bild von den Möglichkeiten der MESYS Wellensysteme zu machen, laden wir Sie herzlich ein, die MESYS-Website an der spezifischen Adresse für <u>Wellensysteme</u> zu besuchen.



Bitte schauen Sie sich auch die entsprechenden Artikel für Wellen oder Verzahnungen unter <u>Home/Downloads</u> /Kategorien gemäss Bild 2 an:





# 2.2 Beschreibung



MESYS Wellensysteme ist eine Software-Erweiterung zu MESYS Wellenberechnung. Damit besteht die Möglichkeit, parallele und koaxiale Wellen in Gruppen darzustellen (Bild 4) und diesen weiter Beziehungen, Verbindungen, Bedingungen oder Belastungen zu vergeben. Es lassen sich daraus allgemein dynamische sowie statische Zustände eines Getriebe-Systems, oder spezifisch resultierende Lagerzustände analysieren.

Mit weiterführender Lizenz können auf entsprechende Normen (ISO 21771-1 / ISO 6336) gestützte Zahnradberechnungen ausgeführt werden (<u>Stirnradberechnung</u>).



Bild 4

# **3. Software Handbuch** 3.1 Online-Handbuch

Das Software Online-Handbuch ist über die Benutzeroberfläche abrufbar, indem das Menü "Hilfe" unter dem Punkt "Handbuch F1" angewählt wird (Bild 5).

Sie können das Online-Handbuch jederzeit lokal mit positionsspezifischen Inhalten direkt über Ihre Tastatur F1 öffnen oder über die <u>Website</u> finden.



## 3.2 Handbuch als PDF

Das Software-Handbuch finden Sie in den Hauptsprachen auch als PDF-Format im MESYS-Installationsverzeichnis (Bild 6).

|                    |     | okaler Datenträger (Cr) > MESVS 12-2024 |                    |                  |
|--------------------|-----|-----------------------------------------|--------------------|------------------|
| Bilder             | * ^ | Name                                    | Änderungsdatum     | Typ              |
| Beginner           |     | MESYS-Manual.pdf                        | 11.07.2024 09:00   | PDF Document     |
| Drafts Drafts Temp |     | MesysManual-DE.exe                      | 14.07.2024 17:52   | Anwendung        |
|                    | 1   | MESYS-Manual-DE.pdf                     | 13.07.2024 12:13   | PDF Document     |
|                    |     |                                         | MesysManual-JA.exe | 14.07.2024 17:52 |
| Dieser PC          |     | MESYS-Manual-JA.pdf                     | 13.07.2024 10:09   | PDF Document     |
| 20 Ohielde         |     | MesysManual-KO.exe                      | 14.07.2024 17:52   | Anwendung        |
| J SD-Objekte       |     | 😼 MESYS-Manual-KO.pdf                   | 13.07.2024 10:22   | PDF Document     |
| Bilder             |     | MesysRBC64.exe                          | 02.12.2024 11:41   | Anwendung        |
| Desktop            |     | MesysReport64.dll                       | 02.12.2024 11:33   | Anwendungserv    |
| Dokumente          |     | MesysShaft64.exe                        | 02.12.2024 11:46   | Anwendung        |

Bild 6



# **4. Projekt eines Wellensystems** 4.1 Inhalt des Tutorials

Für die Automation von Pick & Place eines integralen Produktionssystems ist ein mit 4 kW Elektroantrieb bestücktes, 1-stufiges Planetengetriebe auszulegen. Für diese Aufgabenstellung soll mittels MESYS Wellensysteme eine rechnerische Bestätigung für die vorgesehene Konfiguration des Planetengetriebes gefunden werden.

# 4.2 Ausgangslage

### 4.2.1 Anforderungen

Folgende Anforderungen seien aufgrund der Schnittstellen zu Systemkomponenten zu berücksichtigen:

| Eingangsdrehzahl:                | 2   | 2000 rpm |
|----------------------------------|-----|----------|
| Motor Drehmoment:                | ca. | 30 Nm    |
| Ausgangsdrehzahl Planetenträger: |     | 400 rpm  |
| Drehmomentabgabe:                | ca. | 150 Nm   |

## 4.2.2 Definition Bauteile

#### 4.2.2.1 Zähnezahlen

Für den Planetensatz sind die folgenden Zähnezahlen gegeben, die auch eine Montierbarkeit unter 120° gewährleisten:

| Zähnezahlen | Sonnenrad | 20  |
|-------------|-----------|-----|
|             | Planeten  | 29  |
|             | Hohlrad   | -79 |

Bei festgehaltenem Hohlrad und Abtrieb über Planetenträger:

$$i=1+rac{Z_R}{Z_S}$$

i: Übersetzungsverhältnis Z<sub>R</sub>: Zähnezahl Hohlrad Z<sub>S</sub>: Zähnezahl Sonnenrad netenträger: 4.95

Bild 8

Bei festgehaltenem Planetenträger und Abtrieb über das Hohlrad:

| i | $i = \frac{Z_R}{Z_S}$ | i = 79 / 20 = 3.95 |
|---|-----------------------|--------------------|
|---|-----------------------|--------------------|

Bei festgehaltenem Sonnenrad und Abtrieb über den Planetenträger:

$$i = \frac{Z_R}{Z_R + Z_S}$$
 i = 79 / (79 + 20) = 0.797

Bei einer Eingangsdrehzahl von 2000 rpm ergibt dies bei festgehaltenem Hohlrad eine Ausgangsdrehzahl über den Planetenträger von 404,04 rpm. Damit sei die Anforderung aus 4.2.1 erfüllt.





#### 4.2.2.2 Geometrien und Positionen



Bild 9

Beachten Sie in der Folge die vereinfachten Geometrien der für die Berechnung zu berücksichtigenden Wellen.



Welle Sonnenrad



Geometrisch approximierter Planetenträger 116



Hohlwelle



Eine sich unter Umständen auf den Planetenträger auswirkende, höherwertige Realitätsnähe bietet die **MESYS** Wellenberechnungs-Extension <u>FEM-Integration</u> (Bild 12). Hierbei besteht die Möglichkeit des Imports von Wellen, Gehäusen oder Planetenträgern als STEP oder Nastran-Netz.



#### 4.2.2.3 Parameter

Tabelle 1

| Welle     | Element     | Name    | Position | Parameter                                                             |
|-----------|-------------|---------|----------|-----------------------------------------------------------------------|
| Sonnenrad | Axiale Lage | Х       | 0        |                                                                       |
|           | Kupplung    | Input   | 0.5      | T = 30Nm                                                              |
|           | Wälzlager   | B1      | 29.5     | Rillenkugellager 16002 generisch, radial unterstützt; Aussenring (OR) |
|           |             |         |          | mit Planetenträger verbunden                                          |
|           | Stirnrad    | VZ_SR   | 52.8     | mn=1.25, α=20, b=16, z=20                                             |
|           | Support     | Support | 5        | Axial und radial unterstützt                                          |
|           |             | Motor   |          |                                                                       |
|           | Drehzahl    |         |          | Aktiviert, 2000 rpm                                                   |



| Planetbol-          | Axiale Lage                       | Х       | 0    |                                                                                                                |
|---------------------|-----------------------------------|---------|------|----------------------------------------------------------------------------------------------------------------|
| zen                 | Support Planetenbolzen            | PL1     | 0    | Planetenlagerung, alles fest; mit Planetenträger verbunden                                                     |
|                     | Support Planetenbolzen            | PL2     | 40   | Planetenlagerung, alles fest; mit Planetenträger verbunden                                                     |
|                     | Wälzlager                         | B2      | 20   | Nadellager, 10x17x13 mm; Z=11, Dw=3.5, Dpw=13.5, Lwe=13; radial und axial unterstützt; OR mit Planet verbunden |
| Planetenträ-<br>ger | Axiale Lage                       | х       | 17   |                                                                                                                |
|                     | Wälzlager                         | B3      | 8    | Rillenkugellager 61818 generisch; Radial und axial nach links unter-<br>stützt; OR mit Gehäuse verbunden       |
|                     | Wälzlager                         | B4      | 63.5 | Rillenkugellager 61818 generisch; Radial und axial nach rechts unter-<br>stützt; OR mit Gehäuse verbunden      |
|                     | Kupplung für Reaktions-<br>moment | Output  | 110  | Breite=5                                                                                                       |
| Planet              | Axiale Lage                       | Х       | 13.5 |                                                                                                                |
|                     | Stirnrad                          | VZ_PL   | 6.5  | mn=1.25, α=20, b=13, z=29                                                                                      |
| Hohlrad             | Axiale Lage                       | Х       | 44.8 |                                                                                                                |
|                     | Stirnrad                          | VZ_HR   | 8    | mn=1.25, α=20, b=16, z=-79                                                                                     |
|                     | Support                           | Support | 8    | Alles fest                                                                                                     |
|                     | Drehzahl                          |         |      | Aktiviert, 0 rpm                                                                                               |

## 4.3 Abbildung

#### 4.3.1 Erstellen des Files

Das idealisierte Getriebe soll in der Folge unter vorgesehenen Konfiguration und mit den gewünschten Belastungen untersucht werden.

Starten Sie die MESYS Wellenberechnung oder öffnen Sie eine neue Datei über Symbol "Neu" oder das Menü "Datei" und wählen Sie 'Neu' (Bild 13).

| m              | 20         | TIIC |
|----------------|------------|------|
| Engineering Co | Sulting Sc |      |
|                |            |      |

Datei Berechnung Protokoll Grafiken Extras Hilfe

-

Das Projekt für die Wellenberechnung kann unter 'System' mit einem Namen und einer Beschreibung versehen werden (Bild 14).



#### 4.3.2 Gruppen

Um parallele Wellen zu berechnen, bedarf es gesonderter Gruppen.

| System &<br>System<br>Vellen<br>Vellen<br>Shaft |                   | Bitte vergeben Sie über das Kontext-Menü<br>'Wellen' eine Gruppe und benennen Sie<br>diese 'Hauptgruppe'. |          | System System System System System System Solution Soluti |        |
|-------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Bild 15                                         | Bezeich<br>Positi | nung Hauptgruppe                                                                                          | Rotation | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gruppe |





#### 4.3.3 Komponenten



#### 4.3.3.2 Geometrien

An dieser Stelle sollten alle Geometrien übertragen werden.

Bild 19 Datei Berechnung Protokoll Grafiken Extras Hilfe 🗋 🗁 💾 🚳 📑 🖴 System Я System Bitte bilden Sie die Geo-R Hauptgruppe Ø metrie der Hauptgruppe Sonnenrad ø Planetenträger gemäss den Darstellun-Hohlrad \$ Planetengruppe Entnehmen Sie die Geomet-•0 •0 gen unter 4.2.2.2 nach. Planetbolzen Planet rien für Planetbolzen und Positionierung A > Zahnradverbindungen Planet aus den Bildern 20 / 0 21 unterhalb. -Planetengruppe Geometrie Belastung Randbedingungen Querschnitte Allgemein Plane zen Aussengeometrie Planet Positionierung 4 Länge [mm] urchmesser 1 [mn\_urchmesser 2 [mn Allgemein Geometrie Belastung Randbedingungen O Zahnradverbindungen 1 25 12 = Planetengruppe Durchmesser 1 [mm] Durchmesser 2 [mm] Länge [mm] Planetbolzen 合 Bild 20 1 40 10 Planet 1 itionierung Allgemein Geometrie Belastung Randbedingungen Querschnitte Einstellungen nradverbindungen L=13mm Innengeometrie Aussengeometrie ÷ Länge [mm] Durchmesser 1 [mm] Durchmesser 2 [mm] Länge [mm] urchmesser 1 [mn\_urchmesser 2 [mn Bild 21 1 13 34 1 13 17





Alternativ können die Wellen-Geometrien via Import im Step-Format erstellt werden. Gerne verweisen wir hierzu auf weiterführende Informationen aus dem Handbuch.



#### 4.3.3.3 Positionen im Raum

Lassen Sie uns an dieser Stelle, die grundsätzlichen axialen Positionen eingeben, um eine Basis für die nachträglichen <u>Positionierungen</u> der Wellen in Funktion der Verzahnungen zu ermöglichen.

| System 5<br>System<br>Wellen<br>Hauptgruppe<br>Sonnenrad                                                                                                                                 | Verlegen Sie die x-Position des Planetenträgers gemäss Angaben          | 6   |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----|--|--|--|--|--|
| Planetenträger       In rabeile i auf x = 17 min, dannt dieser mit Bezug auf die ge-         Hohlrad       planetengruppe         Planeteolsen       planeteolsen         Planet       z |                                                                         |     |  |  |  |  |  |
| Zahnradverbindungen                                                                                                                                                                      | Ilgemein Geometrie Belastung Randbedingungen Querschnitte Einstellungen |     |  |  |  |  |  |
|                                                                                                                                                                                          | Allgemein Festigkeit                                                    |     |  |  |  |  |  |
|                                                                                                                                                                                          | Bezeichnung Planetenträger Lastfaktor (statisch) KA_s 1                 | ٩   |  |  |  |  |  |
|                                                                                                                                                                                          | Werkstoff Steel V 🔶 Lastfaktor (Ermüdung) KA_f 1                        | [   |  |  |  |  |  |
| Bild 24                                                                                                                                                                                  | Position x 17 mm Überlastfall Konstantes Spannungsverhältnis            | ; ~ |  |  |  |  |  |



| System &<br>System<br>Vellen<br>Hauptgruppe<br>Sonnenrad<br>Planetenträger<br>Hohlrad<br>Planetengruppe<br>Planetbolzen<br>Planet |           | Verleger<br>in <u>Tabel</u><br>geplante<br>ten kanr | n Sie die x-Positi<br>l <u>e 1</u> auf x = 13.5<br>e Lage der Verza<br>n. | on des Pl<br>mm, dam<br>hnungen | anetenr<br>iit diese:<br>Sonnen | ades gemäss Angaben<br>s mit Bezug auf die<br>rad & Hohlrad fluch- | y g                              |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------|---------------------------------------------------------------------------|---------------------------------|---------------------------------|--------------------------------------------------------------------|----------------------------------|
| Positionierung<br>Zahnradverbindungen                                                                                             | Allgemein | Geometrie                                           | Belastung Randbedingunger                                                 | Querschnitte                    | Einstellungen                   |                                                                    |                                  |
|                                                                                                                                   | Allgemei  | n                                                   |                                                                           |                                 |                                 | Festigkeit                                                         |                                  |
|                                                                                                                                   | Bezeichn  | ung Planet                                          |                                                                           |                                 |                                 | Lastfaktor (statisch)                                              | KA_s                             |
|                                                                                                                                   | Werkstof  | Steel                                               |                                                                           |                                 | ~ 🔶                             | Lastfaktor (Ermüdung)                                              | KA_f                             |
| Bild 25                                                                                                                           | Position  |                                                     |                                                                           | x 13.5                          | mm                              | Überlastfall                                                       | Konstantes Spannungsverhältnis 🗸 |

Das Hohlrad soll erst während der <u>Verzahnungs-Positionierung</u> in die richtige axiale Lage gebracht werden. Belassen Sie es vorerst an seiner aktuellen Position.

#### 4.3.3.4 Koordinaten

| System &<br>System<br>Vellen<br>Sonnenrad<br>Planetenträger<br>Hohlrad<br>Planetengruppe<br>Planetbolzen<br>Planet |                      | Die Lage der Grupper<br>unter Wahl im Systen<br>ter Gruppe ganz rech | n im Raum kör<br>nbaum und da<br>ts eingesehen | nnen jederzeit<br>ann über den Rei-<br>werden. |       | 2D<br>3D<br>ද<br>Q<br>0 |
|--------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|-------|-------------------------|
| Positionierung<br>Zahnradverbindungen                                                                              | Bezeichnung Hauptgru | uppe                                                                 |                                                |                                                |       | Grup                    |
|                                                                                                                    | Position             |                                                                      |                                                | Rotation                                       |       | ope                     |
|                                                                                                                    | X-Position           |                                                                      | x 0 mm                                         | Drehwinkel                                     | φ 0 * | We                      |
|                                                                                                                    | Y-Position           |                                                                      | y 0 mm                                         | Drehachse                                      | nx 0  | llen                    |
|                                                                                                                    | Z-Position           |                                                                      | z 0 mm                                         | Drehachse                                      | ry 0  | 5                       |
| Bild 26                                                                                                            |                      |                                                                      |                                                | Drehachse                                      | rz 0  | lger                    |

#### 4.3.4 Verzahnungen

4.3.4.1 Eingabe

| System 🗗                                                 | Г       |                                                      | 1                             |                 |             |                  |          | Q          |  |  |  |  |  |  |
|----------------------------------------------------------|---------|------------------------------------------------------|-------------------------------|-----------------|-------------|------------------|----------|------------|--|--|--|--|--|--|
| ✓ System ✓ Wellen                                        |         | Markieren Sie im 'System'-                           | ¶ <sup>y</sup> 9 <sup>↓</sup> |                 |             |                  |          | 2          |  |  |  |  |  |  |
| ✓ Hauptgruppe                                            |         | Baum 'Sonnenrad' weisen Sie                          |                               |                 |             |                  |          |            |  |  |  |  |  |  |
| Sonnenrad<br>Planetenträger                              |         | baum Sonnennad, weisen Sie                           |                               |                 |             | in Duanda        |          | 0          |  |  |  |  |  |  |
| Hohlrad                                                  |         | unter dem Reiter 'Belastung'                         |                               |                 | wanien Sie  | im Dropad        | own      | a          |  |  |  |  |  |  |
| <ul> <li>Planetengruppe</li> <li>Planetbolzen</li> </ul> |         | mit ' 🖶 ' ein Element zu. 🧳                          |                               |                 | rechts den  | Typ 'Stirnra     | ad' aus. | 8          |  |  |  |  |  |  |
| Planet                                                   |         | _                                                    |                               |                 |             |                  |          | <b>^</b> * |  |  |  |  |  |  |
| Positionierung<br>Zahnradverbindungen                    | Allgem  | ein Geometrie Belastung Randbedingungen Querschnitte | Einstellungen                 |                 |             |                  |          |            |  |  |  |  |  |  |
|                                                          | Stirnra | d x=52.8mm, 'VZ_SR'                                  | Stimrad V                     |                 |             |                  |          |            |  |  |  |  |  |  |
|                                                          | l r     |                                                      | -                             | Bezeichnung     | 17 SR       |                  |          |            |  |  |  |  |  |  |
|                                                          |         | Belegen Sie nun alle betroffe-                       | 88                            | Position        |             | × 52.8           | mm 🍐     |            |  |  |  |  |  |  |
|                                                          |         | nen Wellen mit den Verzah-                           |                               | Preite          |             | X SEIO           | b 16     |            |  |  |  |  |  |  |
|                                                          |         | nungsdaten gemäss Tabelle 1                          |                               | Drehmoment      |             |                  | TO       | Nm         |  |  |  |  |  |  |
|                                                          |         |                                                      |                               | Richtung des D  | rehmomenter | Figene Fingshe   |          |            |  |  |  |  |  |  |
|                                                          |         | und vergeben Sie jeweils eine                        |                               | Winkel zum Kor  | ntakt       | Ligene Enigabe   | 7 0      |            |  |  |  |  |  |  |
|                                                          |         | Bezeichnung.                                         |                               | Zähnezahl       | nume.       |                  | 7 20     | =          |  |  |  |  |  |  |
|                                                          |         |                                                      |                               | Normalmodul     |             |                  | mn 125   |            |  |  |  |  |  |  |
|                                                          |         |                                                      |                               | Profilverschieh | ungsfaktor  |                  | x 0      | =          |  |  |  |  |  |  |
|                                                          |         | Belassen Sie die restlichen                          |                               | Normaleingriffs | swinkel     |                  | a. 20    | -          |  |  |  |  |  |  |
|                                                          |         | Felder unberührt.                                    |                               | Schrägungswin   | kel         |                  | B D      | -          |  |  |  |  |  |  |
|                                                          |         |                                                      |                               | Schrägungsrich  | itung       | Geradverzahnt    | Fn       |            |  |  |  |  |  |  |
|                                                          |         |                                                      |                               | Zähnezahl des ( | Gegenrades  |                  | z2 0     |            |  |  |  |  |  |  |
|                                                          |         |                                                      |                               | Achsabstand     |             |                  | a 0      |            |  |  |  |  |  |  |
| Bild 27                                                  |         |                                                      |                               |                 | Definition  | n des Radkörpers |          |            |  |  |  |  |  |  |



| Hohlrad                   |                |    |      |    | Planet                    |                |    | Bi   | ild 28 |
|---------------------------|----------------|----|------|----|---------------------------|----------------|----|------|--------|
| Stirnrad                  |                |    |      | ~  | Stirnrad                  |                |    |      | ×      |
| Bezeichnung VZ_HR         |                |    |      |    | Bezeichnung VZ_PL         |                |    |      |        |
| Position                  | x 8            |    | mm 🤙 |    | Position                  | x 6.5          |    | mm 🤙 | =>     |
| Breite                    |                | b  | 16   | mm | Breite                    |                | b  | 13   | mm     |
| Drehmoment                |                | т  | 0    | Nm | Drehmoment                |                | т  | 0    | Nm     |
| Richtung des Drehmomentes | Eigene Eingabe |    |      | ~  | Richtung des Drehmomentes | Eigene Eingabe |    |      | ~      |
| Winkel zum Kontakt        |                | ζ  | 0    | •  | Winkel zum Kontakt        |                | ζ  | 0    | -      |
| Zähnezahl                 |                | z  | -79  |    | Zähnezahl                 |                | z  | 29   |        |
| Normalmodul               |                | mn | 1.25 | mm | Normalmodul               |                | mn | 1.25 | mm     |
| Profilverschiebungsfaktor |                | x  | 0    | ]  | Profilverschiebungsfaktor |                | x  | 0    | ]      |
| Normaleingriffswinkel     |                | α  | 20   | ]• | Normaleingriffswinkel     |                | α, | 20   | -      |

Geben Sie für Innenverzahnungen jeweils negative Zähnezahlen ein.

#### 4.3.4.2 Zahnradverbindungen

Die Verzahnungen müssen in einem nächsten Schritt einander zugeordnet werden. Unter dem System-Baum kann das Fenster 'Zahnradverbindungen' eingesehen werden (Bild 29).



Die Wellen und Zahnräder, die in Kontakt stehen, können Sie hier definieren. Gleichzeitig werden die Grunddaten des Zahnradpaars angezeigt. Zusätzlich zu den Eingaben an der einzelnen Welle, lassen sich die Zahnraddaten nach Berechnungsschritt in diesem Fenster auch gemeinsam modifizieren und bezüglich Sicherheit bewerten (Bild 29).

Verbinden Sie die beiden Verzahnungs-Paare wie in Bild 30 dargestellt und wählen Sie dafür geeignete Farben.

| SystemVZ_SNZ_PL-VZ_SNZ_PL-V KellenVZ_SNZ_PL-VZ_PL-VZ_HR-VZ_PL-VZ_HR-VZ_PL-VZ_HR-VZ_PL-VZ_HR-VZ_PL-VZ_HR-PlanetenträgFilmetenträgTI [Mm] T2 [Nm] SFI SF2SKKepelräderTI [Mm] T2 [Nm] SFI SF2SKSchneckenTI [Mm] T2 [Nm] SFI SF2SKPanetengruppePlanetenträgTI [Mm] T2 [Nm] T2 [Nm] SFI SF2SKPlanetengruppePlanetSchneckenTI [Mm] T2 [Nm] SFI SF2SKPositionierungZahrradVZ_SRVZ_PLNmmZahrradVZ_SRVZ_PLNmmRemenverbindungen SminFmin [N]Position52.86.5mmZahrradVZ_PLPosition52.86.5mmZahrradVZ_PLPosition52.86.5mmZahrradVZ_PLPosition52.86.5mmZahrradVZ_PLPosition52.86.5mmZahrradVZ_PLVerlenIb1613mmProfilverschiebungsfaktor00Schrägungsvinkel6Schrägungsvinkelβ0*Schrägungsvinkelβ0*SchrägungsrichtungGeradverzahnt Geradverzahnt Zahneingriffsterifigkeitc, 20N/mm/µmWerdrehflankenspielj, 0.1mmZahneingriffsterifigkeitc, 20N/mm/µmWerdrehflankenspielj, 0.1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ystem 🗗                            | V Stirnräder             | T1 [Nm] T2 [N | lm1    | SE1     | SE2      | SH1            | SI | ✓ Stirnräder             | T1 [Nm] | T2 [Nm]           | SF     | 1 SF2        | SH1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------|---------------|--------|---------|----------|----------------|----|--------------------------|---------|-------------------|--------|--------------|-----|
| ✓ Wellen       VZ_PL-VZ_HR       ✓         ✓ Hauptgruppe<br>Sonnerrad       Planetenstufen       TI [Nm]       TZ [Nm]       SF1       SF2       SF1         ✓ Planetenstufen       TI [Nm]       TZ [Nm]       SF1       SF2       SF1       SF2       SF1         ✓ Planetenstufen       TI [Nm]       TZ [Nm]       SF1       SF2       SF1       SF2       SF1         ✓ Planetenstufen       TI [Nm]       TZ [Nm]       SF1       SF2       SF1       SF2       SF1         ✓ Planetenstufen       TI [Nm]       TZ [Nm]       SF1       SF2       SF1       SF2       SF1         ✓ Planetenstufen       TI [Nm]       TZ [Nm]       SF1       SF2       SF1       SF2       SF1         ✓ Planetenstufen       TI [Nm]       TZ [Nm]       SF1       SF2       SF1       SF2       SF1         ✓ Planetenstufen       TI [Nm]       TZ [Nm]       SF1       SF2       SF1       SF2       SF1         Planetenstufen       TI [Nm]       TZ [Nm]       SF1       SF2       SF1       SF2       SF1         Ø       Faste       Faste       Faste       Faste       SF1       SF2       SF1         Ø       SF1 <td>System</td> <td>VZ SR-VZ PL</td> <td></td> <td></td> <td>511</td> <td>JIL</td> <td>2111</td> <td>"  </td> <td>VZ_SR-VZ_PL</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | System                             | VZ SR-VZ PL              |               |        | 511     | JIL      | 2111           | "  | VZ_SR-VZ_PL              | -       | -                 |        |              |     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ✓ Wellen                           | VZ_PL-VZ_HR              |               |        |         |          |                |    | VZ_PL-VZ_HR              | -       | -                 |        |              |     |
| Sonnerrad<br>Planettartäger<br>Hohlrad<br>* Planetengruppe<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ✓ Hauptgruppe                      | Planetenstufen           | T1 [Nm] T2 [N | Im] T3 | [Nm]    | SF1      | SF2            | S  | Planetenstufen           | T1 [Nm] | T2 [Nm]           | T3 [Nm | ] SF1        | SF2 |
| Planetenträger<br>Hohlrad       Schnecken       TI [Nm] T2 [Nm]<br>Kupplungen       SF       SH       SW         V Planetengruppe<br>Planetbolen<br>Planet       Riemenverbindungen       Smin       Farbe       Kupplungen       TI [Nm] T2 [Nm]<br>Riemenverbindungen       SF       SH       SK         Zahnradverbindungen       Farbe       Farbe       Farbe       Welle       Sonnenrad       Planet       VZ_PL       Schnesken       TI [Nm] T2 [Nm]       Riemenverbindungen       Schnesken       Schnesken       Schnesken       Schnesken       Schneske                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sonnenrad                          | Kegelräder               | T1 [Nm] T2 [N | lm]    | SF1     | SF2      | SH1            | SF | Kegelräder               | T1 [Nm] | T2 [Nm]           | SF     | 1 SF2        | SH1 |
| Hohlrad       Kupplungen       TI [Nm]       T2 [Nm]       Riemenverbindungen       Smin       Fmin       Fmin       No         Postionierung       Zahnrad       VZ_SR       VZ_PL       Welle       Binet       Hohlrad       Zahnrad       VZ_PL       Welle       Binet       Hohlrad       Zahnrad       VZ_PL       Welle       Binet       Hohlrad       Zahnrad       VZ_PL       VZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Planetenträger                     | Schnecken                | T1 [Nm] T2 [N | lm]    | SF      | SH       | SW             |    | Schnecken                | T1 [Nm] | T2 [Nm]           | S      | F SH         | SW  |
| V Planetergruppe       Riemenverbindungen Smin Fmin [N]       Riemenverbindungen Smin Fmin [N]         Planete       Positionierung       Zahnradverbindungen       Farbe       Farbe         Velle       Sonnenrad V Planet       VZ_SR       VZ_PL       Velle         Position       52.8       6.5       mm         Zahnrad       VZ_SR       VZ_PL       Velle       Position         Zahnrad       VZ_SR       VZ_PL       Velle       Position       5.5       8         Zahnrad       VZ_SR       VZ_PL       VZ_PL       VZ_HR       VZ_HR       VZ_PL       VZ_HR       VZ_PL       VZ_HR       Position       6.5       8       0       0       16       13       mm       Position       6.5       8       0       0       16       13       mm       Position       6.5       8       0       0       0       10       16       13       16       10       10       16       0       10       16       13       16       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hohlrad                            | Kupplungen               | T1 [Nm] T2 [N | lm]    |         |          |                |    | Kupplungen               | T1 [Nm] | T2 [Nm]           |        |              |     |
| Planet       Farbe       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Planetengruppe</li> </ul> | Riemenverbindungen       | Smin Fmin     | [N]    |         |          |                |    | Riemenverbindungen       | Smin    | Fmin [N]          |        |              |     |
| Planet       Farbe       Farbe         Velle       Sonnenrad       Planet       Farbe         Welle       Sonnenrad       Planet       Hohlrad         Zahnradverbindungen       Zahnrad       VZ SR       VZ PL         Position       52.8       6.5       mm         Zähnezahl       20       29       Position       6.5       8         Zähnezahl       20       29       Position       6.5       8       7         Breite       16       13       mm       Position       6.5       8       7         Normalmodul       mn       125       mm       Normalmodul       mn       125       mm         Normaleingriffswinkel       α.       20       •       Schrägungswinkel       β       0       •         Schrägungswinkel       β       0       •       Schrägungswinkel       β       0       •         Schrägungswinkel       β       0       •       Schrägungswinkel       β       0       •         Schrägungsrichtung       Geradverzahnt       Geradverzahnt       Geradverzahnt       Geradverzahnt       Geradverzahnt       Geradverzahnt       Verdrehflankenspiel       j,       0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Planetbolzen                       |                          |               |        |         |          |                |    |                          |         |                   |        |              |     |
| Positionierung       Farbe       Farbe       Farbe         Zahnradverbindungen $Farbe$ $Farbe$ $Farbe$ $Farbe$ $Farbe$ Welle       Sonnenrad $Planet$ $Planet$ $Hohlrad$ $VZ$ Position       52.8       6.5       mm $Zahnrad$ $VZ_PL$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Planet                             |                          |               |        |         |          |                |    |                          |         |                   |        |              |     |
| ZahmradverbindungenFarbeVelleSonnenradPlanetFarbeZahnrad $VZ_SR$ $VZ_PL$ Zahnrad $VZ_PL$ $VZ_PL$ Position $52.8$ $6.5$ mm $2ahnrad$ $VZ_PL$ $VZ_PL$ $VZ_PL$ Position $52.8$ $6.5$ mm $2ahnrad$ $VZ_PL$ $VZ_PL$ $VZ_PL$ $VZ_PL$ Position $52.8$ $6.5$ mm $2ahnrad$ $VZ_PL$ $VZ_PL$ $VZ_PL$ $VZ_PL$ Position $5.5$ $8$ $2ahnrad$ $29$ $-79$ $8ereite$ $16$ $13$ $16$ Breite $16$ $13$ mm $Porfilverschiebungsfaktor00000Normalendulmn1.25mmNormaleingriffswinkel\alpha_a20\cdotSchrägungsvinkel\beta0\cdotSchrägungsvinkel\beta0\cdotSchrägungsvinkel\beta0\cdotSchrägungsvinkel\beta0\cdotAchsabstanda31.25mmVerdrehflankenspielj_k0.1mmZahneingriffssteifigkeitc_r20N/mm/µmVirkungsgradn100%BerechnungMESYS$MESYS$MESYS$MESYS$MESYS$MESYS$VZPL$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Positionierung                     |                          |               |        |         |          |                |    |                          |         |                   |        |              |     |
| VarbeVarbeVarbeWelleSonnenradPlanetVarbePlanetVarbeZahnrad $VZ_SR$ $VZ_PL$ $VZ_hrrad$ $VZ_PL$ $VZ_hR$ $VZ_hR$ Position52.86.5mm $Zahnrad$ $VZ_PL$ $VZ_hR$ $VZ_hR$ Position52.86.5mm $Zahnrad$ $Z_2P_L$ $VZ_hR$ $VZ_hR$ Breite1613mm $Breite$ 1316 $I$ Profilverschiebungsfaktor00 $I$ $I$ $I$ $I$ Normalmodulmn1.25mm $Normaleingriffswinkel$ $a_a$ $20$ $^{\circ}$ Schrägungsvinkel $\beta$ 0 $^{\circ}$ $Schrägungswinkel$ $\beta$ $0$ $^{\circ}$ Achsabstanda $31.25$ mm $Verdrehflankenspiel$ $j_k$ $0.1$ $mm$ Zahneingriffssteifigkeit $c_r$ $20$ $N/rmn/\mum$ $X$ $Zahneingriffskeitic_r20N/rmn/\mumWirkungsgrad\eta100%SerchnungMESYSWirkungsgrad\eta100%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zahnradverbindungen                |                          |               | Ĩ      | -       |          | 1 <sup>°</sup> |    |                          |         | Fasha             |        | Cashar       | - C |
| Welle       Sonnenrad       Planet       Welle       Planet       Hohlrad         Zahnrad       VZ,SR       VZ,PL       Zahnrad       VZ,PL       VZ,PL <td></td> <td></td> <td>Farbe</td> <td></td> <td>Fa</td> <td>irbe</td> <td></td> <td></td> <td>142.445</td> <td></td> <td>rarbe</td> <td></td> <td>Farbe</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                          | Farbe         |        | Fa      | irbe     |                |    | 142.445                  |         | rarbe             |        | Farbe        |     |
| Zahnrad       VZ_SR       VZ_PL       Zahnrad       VZ_PL       VZ_HR         Position       52.8       6.5       mm       Position       6.5       8       79         Zahnezahl       20       29       Zahnezahl       29       -79       79         Breite       16       13       mm       Breite       13       16       13       79         Normalmodul       mn       1.25       mm       Position       6.5       8       79         Normaleingriffswinkel       α,       20       *       79       79       79         Normaleingriffswinkel       α,       20       *       79       79       79       79         Normaleingriffswinkel       α,       20       *       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       79       75 </td <td></td> <td>Welle</td> <td>Sonnenrad</td> <td>~</td> <td>Planet</td> <td></td> <td>1</td> <td></td> <td>Welle</td> <td>Plane</td> <td></td> <td>~ Ho</td> <td>hirad N</td> <td>2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | Welle                    | Sonnenrad     | ~      | Planet  |          | 1              |    | Welle                    | Plane   |                   | ~ Ho   | hirad N      | 2   |
| Position         52.8         6.5         mm         Position         6.5         8           Zahnezahl         20         29         Zahnezahl         29         -79           Breite         16         13         mm         Breite         13         16         -79           Normalmodul         mn         1.25         mm         Breite         13         16         0           Normalmodul         mn         1.25         mm         Normaleingriffswinkel         α,         20         •           Schrägungswinkel         β         0         •         Schrägungswinkel         β         0         •           Schrägungsrichtung         Geradverzaht v         Geradverzaht v         Geradverzaht v         Schrägungswinkel         β         0         •           Achsabstand         a         31.25         mm         Achsabstand         a         31.25         mm           Verdrehflankenspiel         j,         0.1         mm         Zahneingriffsteifigkeit         c,         20         N/mm/µm           Wirkungsgrad         n         100         %         Berechnung         MESYS         Wirkungsgrad         n         100         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | Zahnrad                  | VZ_SR         | ~~     | VZ_PL   | ~        |                |    | Zahnrad                  | VZ_PL   |                   | ~ VZ_  | HR v         |     |
| Zāhnezahl       20       29       -79         Breite       16       13       mm         Profilverschiebungsfaktor       0       0       0         Normalmodul       mn       1.25       mm         Normaleingriffswinkel       α <sub>a</sub> 20       *         Schrägungswinkel       β       0       *         Schrägungswinkel       β       0       *         Schrägungswinkel       β       0       *         Achsabstand       a       31.25       mm         Verdrehflankenspiel       j,       0.1       mm         Zahneingriffssteifigkeit       cr,       20       N/mm/µm         Wirkungsgrad       n       100       %         Berechnung       MESYS       ©       Verdrehlankenspiel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | Position                 | 52.8          |        | 6.5     |          | mm             |    | Position                 | 6.5     |                   | 8      |              | mm  |
| Breite       16       13       mm       Breite       13       16       13       mm         Profilverschiebungsfaktor       0       0       125       mm       Profilverschiebungsfaktor       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    | Zähnezahl                | 20            |        | 29      |          |                |    | Zähnezahl                | 29      |                   | -79    |              |     |
| Profilverschiebungsfaktor       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    | Breite                   | 16            |        | 13      |          | mm             |    | Breite                   | 13      |                   | 16     |              | mm  |
| Normalmodul     mn     1.25     mm     Normalmodul     mn     1.25     mm       Normaleingriffswinkel     α_n     20     •     Normaleingriffswinkel     α_n     20     •       Schrägungswinkel     β     0     •     Schrägungswinkel     β     0     •       Schrägungsrichtung     Geradverzahnt v     Geradverzahnt v     Geradverzahnt v     Schrägungsrichtung     Geradverzahnt v     Geradverzahnt v       Verdrehflankenspiel     j.     0.1     mm     Verdrehflankenspiel     j.     0.1     mm       Zahneingriffssteifigkeit     c.,     20     N/mm/µm     Zahneingriffssteifigkeit     c.,     20     N/mm/µm       Wirkungsgrad     n     100     %     Berechnung     MESYS     Perchnung     MESYS     MESYS     MESYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | Profilverschiebungsfakto | r 0           |        | 0       |          |                |    | Profilverschiebungsfakto | or 0    |                   | 0      |              |     |
| Normaleingriffswinkel     α, 20     ·     Normaleingriffswinkel     α, 20     ·       Schrägungswinkel     β     0     ·     Schrägungswinkel     β     0     ·       Schrägungsrichtung     Geradverzahnt v     Geradverzahnt v     Schrägungsrichtung     Geradverzahnt v     Schrägungsrichtung     Geradverzahnt v     Geradverzahnt v       Achsabstand     a     31.25     mm     Achsabstand     a     31.25     mm       Verdrehflankenspiel     j.     0.1     mm     Verdrehflankenspiel     j.     0.1     mm       Zahneingriffssteifigkeit     c.,     20     N/mm/µm     Zahneingriffssteifigkeit     c.,     20     N/mm/µm       Wirkungsgrad     n     100     %     Berechnung     MESYS     Ø     Berechnung     MESYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | Normalmodul              | mn            | 1.25   | r       | nm       |                |    | Normalmodul              |         | mn 1.             | 25     | mm           |     |
| Schrägungswinkel     β     0     •       Schrägungswinkel     β     0     •       Schrägungsrichtung     Geradverzahnt v     Geradverzahnt v       Achsabstand     a     31.25       Merdrehflankenspiel     j.     0.1       Zahneingriffssteifigkeit     c,     20       Wirkungsgrad     n     100       Berechnung     MESYS     Gerachung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    | Normaleingriffswinkel    | α"            | 20     |         | is.      |                |    | Normaleingriffswinkel    |         | α <sub>n</sub> 20 | )      | •            |     |
| Schrägungsrichtung     Geradverzahnt v     Geradverzahnt v     Geradverzahnt v       Achsabstand     a     31.25     mm     Achsabstand     a     31.25       Verdrehflankenspiel     jt     0.1     mm     Verdrehflankenspiel     jt     0.1       Zahneingriffsstefigkeit     c,     20     N/mm/µm     Zahneingriffsstefigkeit     c,     20     N/mm/µm       Wirkungsgrad     n     100     %     Berechnung     MESYS     Geradverzahnt v     MESYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | Schrägungswinkel         | β             | 0      | •       | i.       |                |    | Schrägungswinkel         |         | βΟ                |        | •            |     |
| Achsabstand     a     31.25     mm     Achsabstand     a     31.25     mm       Verdrehflankenspiel     jk     0.1     mm     Verdrehflankenspiel     jk     0.1     mm       Zahneingriffssteifigkeit     c,     20     N/mm/µm     Zahneingriffssteifigkeit     c,     20     N/mm/µm       Wirkungsgrad     n     100     %     Berechnung     MESYS     MESYS     MESYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | Schrägungsrichtung       | Geradverzah   | nt v   | Geradve | rzahnt 🚿 | -              |    | Schrägungsrichtung       | Gerad   | verzahnt          | ~ Ger  | adverzahnt 🚿 | -   |
| Verdrehflankenspiel     j.     0.1     mm       Zahneingriffssteifigkeit     c.,     20     N/mm/µm     Zahneingriffssteifigkeit     c.,       Wirkungsgrad     n     100     %     Wirkungsgrad     n     100       Berechnung     MESYS     Image: Comparison of the second of the se                                                                                                            |                                    | Achsabstand              | a             | 31.25  | r       | nm       |                |    | Achsabstand              |         | a 31              | .25    | mm           |     |
| Zahneingriffssteifigkeit     c <sub>v</sub> 20     N/mm/µm     Zahneingriffssteifigkeit     c <sub>v</sub> 20     N/mm/µm       Wirkungsgrad     n     100     %     Wirkungsgrad     n     100     %       Berechnung     MESYS     Image: Construction of the second of the s                                                                          |                                    | Verdrehflankenspiel      | j.            | 0.1    | r       | nm       |                |    | Verdrehflankenspiel      |         | j <sub>t</sub> 0. | 1      | mm           |     |
| Wirkungsgrad     n     100     %     Wirkungsgrad     n     100     %       Berechnung     MESYS     Image: Comparison of the second s |                                    | Zahneingriffssteifigkeit | cy            | 20     | 1       | V/mm/µ   | m 🚖            |    | Zahneingriffssteifigkeit |         | c <sub>γ</sub> 20 | )      | N/mm/µ       | n 🚖 |
| Berechnung MESYS V 🔂 Berechnung MESYS V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | Wirkungsgrad             | η             | 100    | 9       | %        |                |    | Wirkungsgrad             |         | η 10              | 00     | %            |     |
| 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    | Berechnung               | MESYS         |        |         |          | - 4-           |    | Berechnung               | MESY    | s                 |        |              | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d 30                               |                          |               |        |         |          |                |    |                          |         |                   |        |              | -   |

Besteht Bedarf, mit der Lizenz für <u>Stirnrad-</u> <u>berechnung</u> zu arbeiten, kann die Verzahnungsberechnung gemäss Bild 30 über 'Berechnung' aktiviert und über die einschlägigen Ein- und Ausgaben bewertet werden.

Gerne möchten wir auf weiterführende Schriften oder das Handbuch unter <u>Zahn-</u> <u>radverbindungen</u> verweisen.

MESYS AG





Lassen Sie die restlichen verzahnungsspezifischen Parameter und Berechnungsmodi für den betrachteten Umfang dieses Tutorials unverändert.

#### 4.3.4.3 Positionierung

Die Gruppen oder Wellen sollten nun in Funktion der Zahnradverbindungen noch relativ zueinander ausgerichtet werden. Ein auch im Detail rein axiales Positionieren der Wellen, wie in Kapitel 4.3.3.3 reicht noch nicht. Im folgenden Prozess bringen wir alle Verzahnungen durch eine rechnerische Beziehung zueinander. Unter dem System-Baum kann das Fenster 'Positionierung' aktiviert werden (Bild 31). Die Positionierungen können mit verschiedenen Kriterien vorgenommen werden, wie etwa aufgrund von Zahnräder oder Gruppen zueinander.

| System     Ø       System     Vellen       Hauptgruppe     Sonnenrad       Planetenträger     Hohlrad       Planetengruppe     Planetolzen       Planet     Positionierung       Zahnradverbindungen     VZ_SR-VZ_PL | Gruppe 'Planetengruppe' ac<br>Welle 'Hohirad' aufgrund Zi | ngrund Zahnradpaar 'VZ_SR-VZ_PL'<br>ahnradpaar 'VZ_PL-VZ_HR'<br>Öffnen Sie das Fensto<br>und aktivieren Sie üb<br>den untenstehenden | er für 'Positionier<br>ber den Schaltkno<br>ı Kriterien. | ung' über den System-Baum<br>pf ' ♣ ' 2 Positionierungen mit |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|---|
| Gruppe aufgrund Zahnradpaar<br>Gruppe<br>Stirnradpaar                                                                                                                                                                | Planeteng<br>VZ_SR-VZ                                     | v<br>jruppe v<br>_PL v                                                                                                               | Welle aufgrund Zahnradpaar<br>Welle<br>Stirnradpaar      | Hohirad<br>VZ_PL-VZ_HR                                       | ~ |



Belassen Sie hierbei den Versatz in x-Richtung dx und den Winkel φ bei 0.

Dadurch wurden nun Gruppe und Welle aufeinander ausgerichtet, was auch im rechten Fenster des Dialoges 'Zahnradverbindungen', 'Positionierung' und auch unter Fenster für 'Wellen' über den System-Baum aufgerufen und eingesehen werden kann (Bild 32).

'Gruppe' ganz rechts, eingesehen werden.

Die Koordinaten der Gruppen, bzw. Wellen können wie bereits erwähnt, auch numerisch über Wahl System-Baum und dann Reiter



Bild 31

Bild 32

### 4.3.5 Stützen

#### 4.3.5.1 Wälzlager

Im Rahmen der Auslegung sei neben der Motorlagerung noch ein zusätzliches Wälzlager auf die Sonnenradwelle zu legen.





Von hier aus kann das Wälzlagermodul für eine spezifische Lagerauswahl über die ' 🕂 ' - Schaltfläche unten rechts, mittels Fenster, oder im System-Baum direkt über die nun hier stehende, stellvertretende Bezeichnung 'B1' erreicht werden (Bild 34).



Aufgrund der radialen Platzverhältnisse, der Belastung und der anvisierten Lebensdauer, soll an den Planeten eine kundenspezifische Nadelhülse für B2 zum Einsatz kommen.



Wählen Sie hier 'Eingabe der Innengeometrie' (Bild 36) und übertragen Sie die Werte gemäss <u>Tabelle</u> 1.

Die Tragzahlen werden beim ersten Berechnungsschritt automatisch nach ISO 281 berechnet. MESYS AG Shaft Systems Starter – 1-Stufen Planeten-Getriebe





Setzen Sie nun die Wälzlager gemäss Parametern aus <u>Tabelle 1</u> auch für den Planetenträger (B3 / B4) auf (Bild 37).

Lassen Sie im Rahmen dieses Tutorials die Lagereinstellung wie 'Lagerspiel' oder im Zusammenhang stehende Passungen unberührt. Gerne verweisen wir auf das <u>Starter Tutorial Basics</u> für Wälzlagerberechnung.

| Lagerspiel             | Eigene Eingabe als Betriebsspiel $ 	imes $ |
|------------------------|--------------------------------------------|
| Diametrales Lagerspiel | Pd 0 mm 😑                                  |

#### 4.3.5.2 Randbedingungen



Vergeben Sie für dieses Lager die entsprechenden Parameter aus Tabelle 1.

Vergeben Sie dem <u>Hohlrad</u> ein 'Lager' mit den entsprechenden Parameter aus <u>Tabelle 1</u>.

Da unser Getriebe auch ein Eingangsdrehmoment erhalten wird, sollte eine Aufnahme der <u>Summe aller Dreh-</u> momente definiert werden. Das Element 'Kupplung für Reaktionsmoment' liefert hier diese Definition (Bild 39).



Bitte beachten Sie, dass die Breite der Darstellung einer Kupplung, sowie etwa die Aktivierung von Eigenfrequenzberechnung für das Reaktionsmoment für diese Berechnung keine Relevanz aufweisen.



| System &<br>System<br>Vellen<br>Hauptgruppe<br>Sonnenrad<br>Planetenträger<br>Hohlrad<br>Planetbolzen<br>Planet<br>Planet | Markieren Sie im System-Baum ' <u>Planetbolzen</u> ', weisen Sie unter<br>dem Reiter 'Randbedingungen' rechts mit ' + ' ein Element zu<br>und wählen Sie im Dropdown rechts den Typ 'Planetenlagerung'<br>aus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ✓ Wälzlager<br>B1 "<br>B2<br>B3 "<br>B4 "<br>Positionierung                                                               | Allgemein     Geometrie     Belastung     Randbedingungen     Querschnitte     Einstellungen       Planetenlagerung x=0mm, 'PL1'     Planetenlagerung     Planetenlagerung     Planetenlagerung       Planetenlagerung x=40mm, 'PL2'     Bezeichnung PL1     Bezeichnung PL1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>Zahnradverbindungen<br/>VZ_SR-VZ_PL<br/>VZ_PL-VZ_HR</li> <li>Bild 40</li> </ul>                                  | Position       x       0       mm       mm |

Zu guter Letzt, soll auch die bei der Nadelbüchse fehlende axiale Abstützung der Planeten ergänzt werden. Solche durch etwa Anschlagdeckel, oder Bundringe realisierten Abstützungen können hier wie in Bild 41 gezeigt, abgebildet werden.



#### 4.3.6 Belastungen

#### 4.3.6.1 Drehzahlen

| System &<br>System<br>Vellen<br>Hauptgruppe<br>Sonnenrad<br>Planetenträger<br>Hohlrad<br>Planetengruppe<br>Planetbolzen<br>Planet |                | Markiere<br>unter der<br>zahl und § | n Sie im Sys<br>n Reiter 'Al<br>geben Sie d | stem-Ba<br>Igemeir<br>Ien Wer | ium ' <u>Son</u><br>1' rechts<br>t gemäs | <u>nenrad</u> ', aktivieren Si<br>das Kästchen für Dreł<br>s <u>Tabelle 1</u> ein. | e<br>n-                            |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------|---------------------------------------------|-------------------------------|------------------------------------------|------------------------------------------------------------------------------------|------------------------------------|
| ✓ Wälzlager<br>B1 'Generic 16002'<br>B2<br>B2 (Generic 61010)                                                                     | Allgemein Geo  | metrie Belastung                    | Randbedingungen                             | Querschnitte                  | Einstellungen                            | Festigkeit                                                                         |                                    |
| B4 'Generic 61818'                                                                                                                | Bezeichnung So | nnenrad                             |                                             |                               |                                          | Lastfaktor (statisch)                                                              | KA_s 1                             |
| Positionierung<br>Zahnradverbindungen                                                                                             | Werkstoff      | Steel                               |                                             |                               | ~ 🕂                                      | Lastfaktor (Ermüdung)                                                              | KA_f                               |
| VZ_SR-VZ_PL                                                                                                                       | Position       |                                     |                                             | x 0                           | mm                                       | Überlastfall                                                                       | Konstantes Spannungsverhältnis 🗸 🗸 |
| VZ_PL-VZ_HR                                                                                                                       | Drehzahl       |                                     |                                             | n 2000                        | rpm 🗹                                    | Durchmesser bei Wärmebehandlung                                                    | d <sub>eff</sub> 0 mm 🗆            |
| Bild 42                                                                                                                           | Temperatur     |                                     |                                             | T 20                          | °C                                       | Anzahl Lastwechsel                                                                 | N 1 106                            |

Bitte aktivieren Sie für das Hohlrad die Drehzahl und vergeben Sie dort 0 rpm.

#### 4.3.6.2 Drehmoment

Das Eingangsdrehmoment für das Planeten- Getriebe sei wie in den <u>Anforderungen</u> definiert 30 Nm.



Die 'Richtung des Drehmomentes' kann entweder durch sein Vorzeichen oder durch die Auswahl "Welle wird angetrieben" / "Welle treibt an" definiert werden.

| System Ø<br>System<br>Vellen<br>Hauptgruppe<br>Sonnenrad<br>Planetengruppe<br>Planetengruppe<br>Planetbolzen<br>Planet                                                                                | Markieren Sie im System-Baum 'Sonnenrad', weisen Sie unter dem<br>Reiter 'Belastung' rechts mit ' 💠 ' ein Element zu und wählen Sie<br>im Dropdown rechts den Typ 'Kupplung' aus.                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| <ul> <li>Wälzlager</li> <li>B1 'Generic 16002'</li> <li>B2 Nadelhülse</li> <li>B3 'Generic 61818'</li> <li>B4 'Generic 61818'</li> <li>Positionierung</li> <li>Zahnradverbindungen</li> </ul> Bild 43 | Allgemein Geometrie Belastung Randbedingungen Querschnitte Einstellungen<br>Kupplung x=5mm, 'Input'<br>Stimrad x=52.8mm, 'VZ_SR'<br>Belassen Sie die 'Richtung des Dreh-<br>momentes' auf 'Eigene Eingabe'.<br>Richtung des Drehmoment<br>Richtung des Drehmoment | 5 mm (=)<br>5 mm (=)<br>5 mm<br>7 30 Nm<br>gabe ~ |

#### 4.3.7 Schmierstoff

Bitte weisen Sie den Schmierstoff gemäss Bild 44 zu.

| System<br>System V Wellen V Hauptgruppe                  |                  |                  | 5                             |         |       | Wellenberechnung                            |   |           | Bild 44           |
|----------------------------------------------------------|------------------|------------------|-------------------------------|---------|-------|---------------------------------------------|---|-----------|-------------------|
| Sonnenrad                                                | Projektname      | 1-Stufen Planet  | engetriebe                    |         |       |                                             |   |           |                   |
| Hohlrad                                                  | Beschreibung     | Starter Tutorial | Wellensysteme                 |         |       |                                             |   |           |                   |
| <ul> <li>Planetengruppe</li> <li>Planetbolzen</li> </ul> | Einstellungen    | Schmierung       | Einstellungen für Darstellung |         |       |                                             |   |           |                   |
| Planet<br>Välzlager                                      | ISO VG 68 min    | eral oil         |                               |         | ~     | Ölschmierung ohne Filterung ISO4406 -/17/14 |   |           | ~ 🕂               |
| B1 'Generic 16002'                                       | ŌI               |                  |                               |         |       | Temperatur                                  | - | TOil 70   | °C                |
| B2 Nadelhülse<br>B3 'Generic 61818'                      | Viskosität bei 4 | 0°C              |                               | nu40 68 | mm²/s | Dichte des Öls                              | ρ | 880       | kg/m <sup>3</sup> |
| B4 'Generic 61818'<br>Positionierung                     | Viskosität bei 1 | 00°C             |                               | nu100 9 | mm²/s | Druck-Viskositäts-Koeffizient               | α | 0.0153881 | 1/MPa             |
| <ul> <li>Zahnradverbindungen</li> </ul>                  | enthält wirk     | same EP Additive |                               |         |       | FZG Laststufe                               | 1 | FZG 12    |                   |

Hiermit ist die Eingabe der Parameter für die rechnerische Darstellung des Getriebes abgeschlossen.

# 5. Berechnung

## 5.1 Einstellungen

Für Zahnradberechnungen sollte, wenn möglich die "erforderliche Lebensdauer H" im Fenster 'Einstellungen' des System-Baumes / System definiert werden (Bild 45). Dieser Wert fliesst neben der Bewertung der Verzahnung auch in die Berechnung der Wellenfestigkeit nach DIN 743 ein. Sehen Sie für weitere Informationen das Handbuch unter <u>Notwendige Lebensdauer</u>, resp. <u>Festigkeitsberechnung</u>, ein.

| System 🗗                                                        | ma                     |                     |                         |                            |                               |         | 226222020000     | water Scheler and the |                       |                   |            |
|-----------------------------------------------------------------|------------------------|---------------------|-------------------------|----------------------------|-------------------------------|---------|------------------|-----------------------|-----------------------|-------------------|------------|
| <ul> <li>System</li> <li>Wellen</li> <li>Hauptgruppe</li> </ul> | Engineering Consulting |                     |                         |                            |                               |         | Wellenb          | erechnung             |                       |                   |            |
| Sonnenrad                                                       | Projektname            | 1-Stufen Planete    | engetriebe              |                            |                               |         |                  |                       |                       |                   |            |
| Hohlrad                                                         | Beschreibung           | Starter Tutorial V  | Vellensysteme           |                            |                               |         |                  |                       |                       |                   |            |
| <ul> <li>Planetengruppe</li> <li>Planetbolzen</li> </ul>        | Einstellungen          | Schmierung          | Einstellungen für Darst | tellung                    |                               |         |                  |                       |                       |                   |            |
| Planet<br>Wälzlager                                             | Gewicht ber            | ücksichtigen        |                         |                            |                               | ÷       | Werkstoff Gehä   | use Steel             |                       |                   | ~ 🕂        |
| B1 'Generic 16002'<br>B2 Nadelbülse                             | Winkel für Gew         | ichtskraft          |                         | β"                         | -90                           | •       | Gehäusetemper    | atur                  |                       | T <sub>h</sub> 20 | °C         |
| B3 'Generic 61818'                                              | Eigenfreque            | nzen berechnen      |                         |                            |                               |         | Notwendige Lef   | pensdauer             |                       | H 2000            | 00 h       |
| B4 'Generic 61818'<br>Positionierung                            | Kreiseleffekt          | berücksichtigen     |                         |                            | _                             | ÷       | Zuverlässigkeit  | Wälzlager             | S                     | 90                | %          |
| <ul> <li>Zahnradverbindungen</li> </ul>                         | Maximale Freq          | Jenz                |                         | fma                        | x 1000                        | Hz      | Festigkeitsbered | hnung                 | Dauerfestigkeit nach  | DIN 743           | $\sim$     |
| VZ_SR-VZ_PL<br>VZ_PL-VZ_HR                                      | Anzahl Eigenfre        | quenzen             |                         | Nfr                        | aq 10                         |         | Wälzlagerpositio | n                     | Eingabe für jedes Lag | er                | ~          |
|                                                                 | Zahnräder als          | Steifigkeit berücl  | ksichtigen              | Vergrösserung o            | les Wellendu                  | rchmess | iers ~           | igen                  | Nach Hutchinson       |                   | <b>~</b> + |
|                                                                 | Zahnräde               | r als Punktlast ber | ücksichtigen            | Zahnrad ist nur            | ein Kraftelem                 | ent     |                  | Wellenmodel verwenden |                       |                   |            |
| Bild 45                                                         | Gehäuses               | eifiakeit berücksi  | chtigen                 | 3D-Modell mit              | ies wellendu<br>Zentralknoter | cnmess  | ers              |                       |                       |                   |            |
|                                                                 | Konfigura              | tionen berücksich   | itigen                  | 3D-Modell<br>3D-Modell mit | Zähnen                        |         |                  |                       |                       |                   |            |



Ausserdem ist es sinnvoll eine Wahl für die möglichen Einstellungen zu "Zahnräder als Steifigkeit berücksichtigen" vorzunehmen (Bild 45). Bei "Vergrösserung des Wellendurchmessers" beispielsweise, wird der Wellendurchmesser automatisch auf den Fusskreisdurchmesser plus 0.4\*Modul erhöht. Für den Fusskreisdurchmesser wird eine Fusshöhe des Bezugsprofils von 1.25 angenommen. Bitte entnehmen Sie die entsprechenden Inhalte der weiteren Einstellungen aus dem Handbuch unter <u>Zahnräder als Steifigkeit berücksichtigen</u>.

### 5.2 Berechnungsschritt

Der Berechnungsschritt kann über den Menüpunkt 'Berechnung'/Berechnen', direkt über das Icon unter dem Menüband oder einfach durch Betätigen von F5 ausgeführt werden.

| Protokoll Grafiken I | Extras |
|----------------------|--------|
| ı                    | F5     |
| 1                    | F5     |

Bild 46

Bitte starten Sie die Berechnung.

Achten Sie auf das grüne Häkchen unten rechts, was die Konsistenz des Berechnungsschrittes bestätigt.

# 6 Resultate

# 6.1 Resultateübersicht

| Result overview                |                                                                                                                                              | 8   |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Minimal bearing reference life | minL10rh 128220 h Minimal bearing modified reference life minLnmrh 17956.2 h Minimal static safety for bearings (ISO 17956) minS0eff 8.83033 |     |
| Maximal equivalent stress      | maxSigV 163.751 MPa Minimal root safety for gears minGearSF 2.58534 Minimal flank safety for gears minGearSH 0.910531                        |     |
| Maximal displacement in x      | maxUx 0.000207666 mm Maximal displacement in radial direction maxUr 0.108541 mm Maximal bearing stress pmax 1352.28                          | MPa |

Die Resultateübersicht am unteren Rand des Fensters zeigt die wichtigsten Ergebnisse an (Bild 46). Dessen Inhalte können über das Menü Extras / Resultateübersicht nach eigenem Bedarf konfiguriert werden.

Es zeigt sich durch die Wahl eines höher viskosen Schmierstoffes, dass sich die modifizierte Referenzlebensdauer (Bild 47) substantiell und auf das Niveau von <u>Wert H</u> erhöhen liesse.

| ISO VG 100 mir               | neral oil         |                                               | ~            | Ölschmierung ohne Filterung ISO4406 -/17/14 |                                         |                              |  |  |
|------------------------------|-------------------|-----------------------------------------------|--------------|---------------------------------------------|-----------------------------------------|------------------------------|--|--|
| Resultateübersicht           |                   |                                               |              |                                             |                                         | Ð                            |  |  |
| Minimale Referenzlebensdauer | minL10rh 128220   | h Minimale modifizierte Referenzlebensdauer   | minLnmrh 20  | 906.2 h                                     | Minimale statische Sicherheit Wälzlager | (ISO 17956) minS0eff 8.83033 |  |  |
| Maximale Vergleichsspannung  | maxSigV 163.751   | MPa Minimale Sicherheit Zahnfuss              | minGearSF 2. | 58534                                       | Minimale Sicherheit Zahnflanke          | minGearSH 0.929774           |  |  |
| Maximale Verschiebung in x   | maxUx 0.000207661 | mm Maximale Verschiebung in radialer Richtung | g maxUr 0.   | 108541 mm                                   | n Maximale Pressung in Wälzlagern       | pmax 1352.28 MPa             |  |  |

# 6.2 Übersicht Zahnradverbindungen

#### 6.2.1 Zahnradberechnung

Die Verzahnungs-Resultate fördern auch Werte in Funktion der aktivierten Lizenz. In der vorliegenden Beispielberechnung, wurde die Verzahnungs-Berechnung aktiviert (<u>Bild 30</u>), wenn auch die Eingaben dazu nicht editiert wurden.

| System 6                                      | Alle                                                                                                                                                                                          | emein                   | Geometrie        | Bezugsprofil     | Details für Festigkeit |       |            |                                                   |                 |         |                                        |        |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|------------------|------------------------|-------|------------|---------------------------------------------------|-----------------|---------|----------------------------------------|--------|
| ✓ System                                      |                                                                                                                                                                                               |                         |                  | 3,               |                        |       |            |                                                   |                 |         |                                        | -      |
| ✓ Wellen                                      | Dyn                                                                                                                                                                                           | amikfakt                | or               |                  |                        | Ky    | 1.02888    | Kopfrücknahme                                     | C,              | 0       | 0                                      | μm     |
| <ul> <li>Hauptgruppe<br/>Sonnenrad</li> </ul> | Last                                                                                                                                                                                          | Lastverteilungsfaktor K |                  |                  |                        | Ky    | 1          | Fussrücknahme                                     | C <sub>f</sub>  | 0       | 0                                      | μm     |
| Planetenträger                                | Brei                                                                                                                                                                                          | Breitenlastfaktor       |                  |                  |                        | KHB   | 1.25       | Oberflächenrauheit Zahnflanke                     | R <sub>zH</sub> | 6       | 6                                      | μm     |
| Hohlrad                                       |                                                                                                                                                                                               |                         |                  |                  |                        |       |            |                                                   |                 | 10      |                                        | 1      |
| <ul> <li>Planetengruppe</li> </ul>            |                                                                                                                                                                                               | Profilkorn              | ekturen kompe    | ensieren Deforma | itionen                |       |            | Oberflächenrauheit Zahnfuss                       | Rgr             | 18      | 18                                     | μm     |
| Planetbolzen                                  |                                                                                                                                                                                               | Begrenzte               | Grübchenbild     | lung zulässig    |                        |       |            | Steabreite                                        | b,              | 0       | 0                                      | mm     |
| Planet                                        | Erfo                                                                                                                                                                                          | rderliche               | · Sicherheitefal | tor 7 shofues    |                        | c     | 14         |                                                   |                 |         | 1                                      | 1      |
| ✓ Wälzlager                                   | Eno                                                                                                                                                                                           | rueniche                | sichemeitsra     | Ktor Zanniuss    |                        | PEmin | 1.4        | Anzahl Eingriffe                                  | NM              | 1       | 1                                      |        |
| B1 'Generic 16002'                            | Erfo                                                                                                                                                                                          | rderliche               | r Sicherheitsfal | ktor Zahnflanke  |                        | SHmin | 1          | Wechselbiegung                                    |                 | Nein ~  | Nein ~                                 | 1      |
| B2 Nadelhülse                                 |                                                                                                                                                                                               |                         |                  |                  |                        |       |            |                                                   |                 | 1.03500 | 1                                      |        |
| B3 'Generic 61818'                            |                                                                                                                                                                                               |                         |                  |                  |                        |       |            | Einflussfaktor der Mittelspannungsempfindlichkeit | YM              | 1       | 1                                      | j L    |
| B4 'Generic 61818'                            |                                                                                                                                                                                               |                         |                  |                  |                        |       |            |                                                   |                 |         |                                        | 1      |
| Positionierung                                |                                                                                                                                                                                               | Dio                     | 7ahnra           | dhorod           | hnung kann             | du    | rch Aucu   | ahl des Zahnradnaares im                          | Sve             | tombai  | 1m / '7                                | ahn.   |
| <ul> <li>Zahnradverbindungen</li> </ul>       |                                                                                                                                                                                               | Die                     | Zamine           | ubereci          | inung kann             | uu    | I CII Ausw | ann ues Zannnaupaares inn                         | Jys             | tembat  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 21111. |
| VZ_SR-VZ_PL<br>VZ_PL-VZ_HR                    | <ul> <li>radverbindungen' geöffnet werden. Die Zahnradparameter kann man hier editieren und</li> <li>beim Schliessen der Zahnradberechnung werden die Eingaben dann zurückgelesen.</li> </ul> |                         |                  |                  |                        |       |            |                                                   |                 |         |                                        | nd     |
|                                               |                                                                                                                                                                                               |                         |                  |                  |                        |       |            |                                                   |                 |         |                                        |        |



#### 6.2.2 Resultate Zahnradverbindungen

Im Fenster für 'Zahnradverbindungen' (Bild 49) werden für jede Verzahnung Drehmomente, Sicherheitsfaktoren für Zahnfuss- und Flanken-Sicherheit (SF / SH) und weiter die Breitenlastverteilung (wmax / wavg) nach ISO 6336 angezeigt.

Im unteren Fenster werden Leistungsdaten, geometrischen Daten und Profilverschiebungsfaktoren (x1 / x2) ausgegeben.

Es fällt im Rahmen unserer Auslegung hier auf, dass die Flanken-Sicherheit 'SH' mit 0.93 unter den üblichen Werten für Standard Industriegetriebe zu liegen kommt. Ein Blick in das Fenster für Zahnradverbindungen zeigt hingegen für beide Verzahnungspaare akzeptable Werte für Zahnfuss-Sicherheit SF und Breitenlastverteilung wmax/wavg.

> Das Anwenden eines Profilverschiebungsfaktors beispielsweise von je 0.3 an VZ\_SR und VZ\_PL, erhöht die Zahnfuss-Sicherheit SF substantiell und erhöht die Flanken-Sicherheit auf >1 (Bild 50).

| 8                                  | ✓ Stirnrä     | der         | T1 [Nm]    | T2 [Nm]  | SF1     | SF2  | SH1   | SH2   | wmax/wavo  |
|------------------------------------|---------------|-------------|------------|----------|---------|------|-------|-------|------------|
| em                                 | ✓ VZ          | SR-VZ_PL    | -          | -        |         |      |       |       |            |
| Wellen                             |               | Planet 1    | 9.996      | 14.49    | 3.06    | 2.99 | 0.93  | 0.98  | 1.15       |
| <ul> <li>Hauptgruppe</li> </ul>    |               | Planet 2    | 9.998      | 14.50    | 3.06    | 2.99 | 0.93  | 0.98  | 1.13       |
| Sonnenrad                          |               | Planet 3    | 10.01      | 14.51    | 3.05    | 2.98 | 0.93  | 0.98  | 1.16       |
| Planetenträger                     | ~ VZ          | _PL-VZ_HR   | -          | -        |         |      |       |       |            |
| Hohlrad                            |               | Planet 1    | -14.49     | 39.48    | 2.59    | 2.98 | 1.69  | 1.75  | 1.03       |
| <ul> <li>Planetengruppe</li> </ul> |               | Planet 2    | -14.50     | 39.49    | 2.59    | 2.98 | 1.69  | 1.75  | 1.02       |
| Planetbolzen                       |               | Planet 3    | -14.51     | 39.52    | 2.59    | 2.98 | 1.69  | 1.75  | 1.04       |
| Planet                             | Planet        | enstufen    | T1 [Nm]    | T2 [Nm]  | T3 [Nm] | SF1  | SF2   | SF3   | SH1        |
| Walzlager                          | Kegelr        | äder        | T1 [Nm]    | T2 [Nm]  | SF1     | SF2  | SH1   | SH2   |            |
| B1 Generic 10002                   | Schne         | cken        | 11 [Nm]    | 12 [Nm]  | SF      | SH   | SW    | SI    | SB         |
| B3 'Generic 61818'                 |               |             |            | 7 LID    |         |      |       |       |            |
| B4 'Generic 61818'                 |               | VZ_3K-VZ_PL | VZ_PL-V    | 2_110    |         |      |       |       |            |
| Positionierung                     | Welle 1       | Sonnenrad   | Planet     |          |         |      |       |       |            |
| Zahnradverbindungen                | Welle 2       | Planet      | Hohlrad    |          |         |      |       |       |            |
| VZ_SR-VZ_PL                        | 0.040         | 2002 51     | 1057.22    |          |         |      |       |       |            |
| VZ_PL-VZ_HK                        | P[W]          | 2095.51     | 1057.55    |          |         |      |       |       |            |
|                                    | n1 [rpm]      | 2000        | -696.621   |          |         |      |       |       |            |
|                                    | n2 [rpm]      | -696.621    | 1.49236e-  | -88      |         |      |       |       |            |
|                                    | u             | 1.450       | 2.724      |          |         |      |       |       |            |
|                                    | a [mm]        | 30.625      | 30.625     |          |         |      |       |       |            |
|                                    | mn [mm]       | 1.25        | 1.25       |          |         |      |       |       |            |
|                                    | alpha [°]     | 20.0000     | 20.0000    |          |         |      |       |       |            |
|                                    | beta [°]      | 0.0000      | 0.0000     |          |         |      |       |       |            |
|                                    | z1            | 20          | 29         |          |         |      |       |       |            |
|                                    | z2            | 29          | -79        |          |         |      |       |       |            |
|                                    | x1            | 0.000       | 0.000      |          |         |      |       |       |            |
|                                    | x2            | 0.000       | 0.459      |          |         |      |       |       |            |
| I                                  | Chinese alars | TI          | (Necl. T)  | [Nm]     | CE1     | SE3  | CLI1  | CL12  |            |
| tors hoi-                          | Surnrader     | /7 DI       | [NIII] 12  | . [NIII] | 351     | 362  | 211   | 382   | winax/wavg |
| COIS DEF                           | * vZ_SK-1     | VZ_PL       | -<br>0 005 | 14 49    | 3 34    | 3 10 | 1.02  | 1.09  | 1 12       |
|                                    | - Plan        | 100 L       | 4.774      |          |         |      | 1.116 | 1.1/0 | 1.16       |

|        | -                                                               |                                               |                                                              |                                                                             |                                                                                            |                                                                                                                                                                                                                    |
|--------|-----------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.995  | 14.49                                                           | 3.34                                          | 3.10                                                         | 1.02                                                                        | 1.08                                                                                       | 1.12                                                                                                                                                                                                               |
| 9.999  | 14.50                                                           | 3.34                                          | 3.10                                                         | 1.02                                                                        | 1.08                                                                                       | 1.11                                                                                                                                                                                                               |
| 10.01  | 14.51                                                           | 3.33                                          | 3.09                                                         | 1.02                                                                        | 1.08                                                                                       | 1.14                                                                                                                                                                                                               |
| -      | -                                                               |                                               |                                                              |                                                                             |                                                                                            |                                                                                                                                                                                                                    |
| -14.49 | 39.48                                                           | 2.75                                          | 3.51                                                         | 1.89                                                                        | 1.96                                                                                       | 1.02                                                                                                                                                                                                               |
| -14.50 | 39.50                                                           | 2.75                                          | 3.50                                                         | 1.89                                                                        | 1.96                                                                                       | 1.02                                                                                                                                                                                                               |
| -14.51 | 39.52                                                           | 2.75                                          | 3.50                                                         | 1.89                                                                        | 1.96                                                                                       | 1.03                                                                                                                                                                                                               |
|        | -<br>9.995<br>9.999<br>10.01<br>-<br>-14.49<br>-14.50<br>-14.51 | 9.995 14.49<br>9.999 14.50<br>10.01 14.51<br> | 9.995 14.49 3.34<br>9.999 14.50 3.34<br>10.01 14.51 3.33<br> | 9.995 14.49 3.34 3.10<br>9.999 14.50 3.34 3.10<br>10.01 14.51 3.33 3.09<br> | 9.995 14.49 3.34 3.10 1.02<br>9.999 14.50 3.34 3.10 1.02<br>10.01 14.51 3.33 3.09 1.02<br> | 9.995 14.49 3.34 3.10 1.02 1.08<br>9.999 14.50 3.34 3.10 1.02 1.08<br>10.01 14.51 3.33 3.09 1.02 1.08<br>14.49 39.48 2.75 3.51 1.89 1.96<br>- 14.50 39.50 2.75 3.50 1.89 1.96<br>- 14.51 39.52 2.75 3.50 1.89 1.96 |

Bild 50

Bild 49

Besteht Bedarf, mit der Lizenz für <u>Stirnradberechnung</u> zu arbeiten, kann die Verzahnungsberechnung gemäss <u>Bild 30</u> aktiviert und über die einschlägigen Ein- und Ausgaben weiter bewertet werden. Gerne möchten wir auf den offiziellen Leistungsumfang oder das Handbuch unter <u>Zahnradverbindungen</u> verweisen.

öystem ∽ Syst

~

### 6.3 Lastkollektive

Über das Systemfenster unter dem Reiter 'Einstellungen' kann ein Lastkollektiv eingegeben werden. Dadurch kann über den System-Baum das entsprechende

Lastkollektiv berücksichtigen

Eingabefenster erreicht werden. Nähere Angaben dazu finden Sie in unserem <u>Shaft Starter Tutorial</u> oder im Handbuch unter <u>Berechnung mit Lastkollektiv</u>.

## 6.4 Grafische Darstellung von Resultaten

#### 6.4.1 Übersicht

Nebst zahlreichen weiteren zur Bewertung der Verzahnung dienliche Grafiken unter dem Menü Grafiken, unterhalb die Linienlast und Spaltweite über Position für die vorliegende Berechnung (Bild 51).





Die Linienlast (Bild 51) zeigt die Belastung aller 3 Kontakte an. Der geringe Unterschied ist auf das Gewicht der Wellen zurückzuführen.

Die Spaltweite (Bild 51) gibt den Abstand zwischen den Flanken an, wenn die Lastübertragung nur an einem Punkt stattfinden würde. Im vorliegenden Fall würde eine Flankenlinienkorrektur auf Basis einer Spaltweite von max. 0.6 μm wirtschaftlich nicht zu rechtfertigen sein.

Die obigen Diagramme wurden mit der Einstellung "<u>Vergrösserung des Wellendurchmessers</u>" erstellt. Zahneingriffssteifigkeit, Wellen- und Lagersteifigkeit haben einen Einfluss auf diese Diagramme. Aber auch Fertigungsfehler und Gehäusesteifigkeit haben einen Einfluss auf das reale Getriebe.

#### 6.4.2 Menü Grafiken

Eine zahlreiche Auswahl graphischer Resultate-Darstellungen steht über das Menü 'Grafiken' zur Verfügung (Bild 52).





#### 6.4.3 Export

Über den Menüpunkt 'CAD kann das Wellensystem oder Komponenten daraus angezeigt und weiter mittels Kontextmenü auch als STEP-Datei zur Weiterverwendung exportiert werden.

| Datei Berechnung Protokoll                                            | Grafiken Extras Hilfe                   |   |                                         |         | k⊊x<br>k≟x                         |        |
|-----------------------------------------------------------------------|-----------------------------------------|---|-----------------------------------------|---------|------------------------------------|--------|
| System #                                                              | CAD Hauptgruppe                         | • | nur Wellengeomet<br>Wellengeometrie r   |         | Grafiken<br>Grafik speichern unter | •      |
| <ul> <li>✓ System</li> <li>✓ Wellen</li> <li>✓ Hauptgruppe</li> </ul> | Vergleichsspannung<br>Campbell Diagramm |   | Geometrie der Gru<br>Detaillierte Geome |         | Grafik drucken<br>Kopieren         | Strg+C |
| Sonnenrad<br>Planetenträger                                           | Harmonische Antwort 3D<br>3D Geometrie  |   | Geometrie<br>Detaillierte Geometrie     | Bild 54 |                                    |        |

Geometrie

MESYS wünscht Ihnen eine Iehrreiche und gewinnbringende Erfahrung mit unseren Tutorials. Bitte wenden Sie sich bei Unklarheiten, Anregungen oder Fragen, ungehindert an <u>info@mesys.ch</u>.