

Tutorial Series

Wälzlagerberechnung - Starter Basics Erste Ergebnisse

Inhaltsverzeichnis

1. Vorwort	2
1.1 Ziel des Tutorials	2
1.2 Software Version	2
1.3. Hinweise	2
2. MESYS Wälzlagerberechnung - Stärken und Möglichkeiten	2
3. Software Handbuch	3
3.1 Handbuch online	3
3.2 Handbuch als PDF	3
4. Berechnung von Wälzlager	3
4.1 Generell	
4.2 Menü-Funktionen	
4.3 Einstellungen unter 'Allgemein'	4
4.3.1 Generell	4
4.3.2 Faktor a ISO	4
4.3.3 Fliehkraft	5
4.3.4 Temperaturgradient in Passungen	5
4.3.5 Berechnung für Spiellage	5
4.3.6 Wälzkörpertemperatur	5
4.3.7 Elastische Aufweitung Ringe	5
4.3.8 Lastkollektiv	5
4.3.9 Erweiterte Lebensdauer	5
4.4 Wälzlagergeometrie	6
4.4.1 Generell	6
4.4.2 Eingabe über Aussengeometrie	6
4.4.3 Eingabe der Aussengeometrie und der Tragzahlen	7
4.4.4 Eingabe der Innengeometrie	7
4.4.5 Eingabe der Innengeometrie und der Tragzahlen	
4.4.5 Lager aus Datenbank wahlen	
4.4.7 Lagerspie	
4.4.8 Toleranz des Lagers	12
4.5 Einstellungen unter Lagerköringunation	
4.6 Einsteilungen unter Werkston und schmierung	
4.6.1 WERKSTOT	16
4.0.2 Scinnierung	
4.7 LAllemain	
4.7.1 Angeneni	
4.7.2 Enigoperentee	
5.1 Methodologie	18
5.2 Passing	18
5 2 1 Protokoll Toleranzen	18
5.2.1 Toleranz & Rainheit	
5.2.3 ISO Passung	
5.2.4 Temperaturgefälle	
5.2.5 Elastische Aufweitung der Ringe	19
5.2.6 Temperaturgradient	20
5.3 Montage / Demontage	20
5.4 Belastung	20
5.4.1 Allgemein	20
5.4.2 Tragzahl	20
5.4.3 Lastkollekitv	21
5.4.4 Parametervariation	21
6. Resultate	23
6.1 Protokolle	23
6.2 Grafiken	23
6.3 Weitere Resultate	24
6.4 Protokolle	24

1. Vorwort 1.1 Ziel des Tutorials

Dieses Starter-Tutorial zu MESYS Wälzlagerberechnung hat das Ziel, User mit den Funktionalitäten der Software bekanntzumachen und erste Eindrücke über die Mächtigkeit der rechnerischen Betrachtung von Wälzlagern zu erhalten. Im Sinne einer zweckgebunden inhaltlichen Einschränkung, werden hier nur Themen und Einstellungen erwähnt oder behandelt, welche auch einer angenommenen Vertrautheit mit dem Produkt und den Übungsinhalten gerecht werden. Wenden Sie sich ungehindert an <u>MESYS</u>, sollten in der Verwendung der Software Fragen auftauchen.

1.2 Software Version

Dieses Tutorial wurde mit MESYS Wälzlagerberechnung Version 12-2024 erstellt.

1.3. Hinweise

Ein blauer Pfeil bedeutet eine Aufforderung an den Leser. Ein grüner Pfeil bedeutet eine Schlussfolgerung oder Wirkung.

2. MESYS Wälzlagerberechnung - Stärken und Möglichkeiten

Um sich ein Bild von den Möglichkeiten der MESYS Wälzlagerberechnung zu machen, laden wir Sie herzlich ein, die MESYS-Website an der spezifischen Adresse für <u>Wälzlagerberechnung</u> zu besuchen.

Bitte schauen Sie sich auch die entsprechenden <u>Artikel für Wälzlager</u> unter Home/Produkte/Kategorien/Wälzlager gemäss Bild 1 an:

3. Software Handbuch 3.1 Handbuch online

Datei Berechnung Protokoll Grafiken Extras Hilfe			
	andbuch F1		
In	ro		
Allgemein Wälzlagergeometrie Lagerkonfiguration	Werkstoff und Schmierung Belastun	g Stützrollen	
Mesys	Wäl	zlagerberechnung	
Engineering Consulting Software AG	MESYS Handbuch	MESVS Reference X	
Projektname			
Deschariburg	IIICSUS		Ξ.
Beschreibung		MESYS Website Download Contact	
Einstellungen	📰 🤌 Q	Mavigation: » No topics above this level « C S S E	
Zeres (Sector)	MESTS Berechnungssontware		1 H I
Zuvenassigkeit		Diese Wälzlagerberechnung (Version 06/2024) berechnet die	4.11
Grenzwert für alSO	MESYS Wellenberechnung	Lastverteilung, die Referenzlebensdauer und die Erweiterte	
	MESTS Wettenberechnung	Referenziebensdauer nach ISO/TS 16281 (DIN 26281) für die	2 H I
Reibwert	Eingabeparameter	Tolgenden Lagerarten:	
Schmierfilmdicke berechnen	Thermisch zulässige	Radial-Rillenkugellager	л
	Betriebsdrehzahl		
Fliehkraft berücksichtigen	Fettgebrauchsdauer	Zweireihige Rillenkugellager	
Temperatureradient in Passungen herückeichtigen	📓 Grenzlastdiagramm	Axialrillenkugellager	i
lemperaturgradient in Passungen berucksichtigen	Resultate		4
Oszillierendes Lager	Literaturverzeichnis	Radial-Schrägkugellager	
Erforderliche Einhärtetiefe berechnen	MESYS Berechnung für Kugelgewindetriebe	Axial-Schrägkugellager	
Erforderliche Einhärtetiefe aus Dauerfestigkeit	MESYS Hertz Berechnung	Zweireihige radiale Schrägkugellager	
	MESYS Axial-Radial-Rollenlager		
Erforderliche Sicherheit für Einhärtetiefe	MESYS Stirnradpaar	• Zweireinige Axial-Schragkugellager Rild 2	,
	MESYS Zahnrad Positionsberechnung	Finreihige Pendelkugellager	

Das Software-Handbuch ist über die Benutzeroberfläche abrufbar, indem das Menü 'Hilfe' unter dem Punkt 'Handbuch F1' angewählt wird:

Sie können das Software-Handbuch jederzeit auch lokal mit positionsspezifischen Inhalten direkt über Ihre Tastatur F1 öffnen.

3.2 Handbuch als PDF

Das Software-Handbuch finden Sie in den Hauptsprachen auch als PDF-Format im MESYS-Installationsverzeichnis (Bild 3) oder direkt auf der MESYS Website unter <u>'Downloads/Allgemeine Downloads</u>'.

📙 🛃 📕 🖛 MESYS 12-2024			
Datei Start Freigeben /	Ansicht		
← → × ↑ 🔤 → Dieser PC :	> Lokaler Datenträger (C:) > MESYS 12-2024		
📰 Bilder 🛷 '	Name	Änderungsdatum	Тур
Beginner Drafts	MESYS-Manual.pdf	11.07.2024 09:00	PDF Document
, Drafts	MesysManual-DE.exe	14.07.2024 17:52 13.07.2024 12:13	Anwendung PDF Document
Temp	III MesysManual-JA.exe	14.07.2024 17:52	Anwendung PDE Document
Dieser PC 3D-Objekte	MesysManual-KO.exe	14.07.2024 17:52	Anwendung
E Bilder	MESYS-Manual-KO.pdf	13.07.2024 10:22 02.12.2024 11:41	PDF Document Anwendung
Dokumente	MesysReport64.dll MesysShaft64.exe	02.12.2024 11:33 02.12.2024 11:46	Anwendungserwe Anwendung

Bild 3

4. Berechnung von Wälzlager

4.1 Generell

Die Software MESYS Wälzlagerberechnung berechnet die Lastverteilung, die Referenzlebensdauer und die Erweiterte Referenzlebensdauer nach ISO 16281, sowie die Basislebensdauer und Erweiterte Lebensdauer nach ISO 281 für aktuell 31 Wälzlagerausführungen.

4.2 Menü-Funktionen

Nicht alle Menü's bestehen aus selbsterklärenden Inhalten. Dieses Tutorial führt Sie im Rahmen der gestellten Aufgaben und in der Abwicklung des Eingabeprozesses über die entsprechenden Inhalte und Erklärungen.

Datei	Berechnun	ig P	rotokoll	Grafiken	Extras	Hilfe
	iii 📔	B				

Nach dem Start präsentiert sich die Oberfläche der Software in 6 Registerkarten: 'Allgemein', 'Wälzlagergeometrie', Lagerkonfiguration', 'Werkstoff und Schmierung', 'Belastung' und 'Stützrollen'.

										DIIU 4	_
Dat	ei Berechn	iung Protokoll Graf	iken Extras Hilfe								
) 📄 💾	I 🗳 退 🖶									
4	llgemein	Wälzlagergeometrie	Lagerkonfiguration	Werkstoff und	Schmierung	Bela	astung S	tützrollen			
E						W	Välzlag	jerbe r	rechnung		
P	rojektname	Starter Tutorial									
B	eschreibung	Erste Ergebnisse									
lг	Einstellunge	n									
	Zuverlässigk	keit		S	90	%	Berechnur	ng für mittle	eres Spiel 🗸	+	
	Grenzwert fi	ür alSO		alSOMax	50]	Wälzkörpe	er hat maxim	nale Temperatur	\sim	
	Reibwert			μ	0.1]	Erster Wälz	zkörper auf j	y-Achse 🗸	+	
	Schmier	filmdicke berechnen					Kreiselmo	ment wird n	nicht berücksichtigt	\sim	
	✓ Fliehkraf	t berücksichtigen					Die Leben	sdauer des V	Wälzkörpersatzes wird nicht berechnet	\sim	
	Tempera	turgradient in Passunge	n berücksichtigen				Elastische	Aufweitung	g der Ringe wird nicht berücksichtigt \sim	+	

Unter dem Reiter 'Allgemein' wird Ihnen eine zahlreiche Menge an möglichen Einstellungen geboten. Im Rahmen dieses 'Starter Tutorial' ist es aufgrund des potentiellen Umfangs nicht möglich, im Detail auf alle Funktionen der Software einzugehen. Bitte sehen Sie für die entsprechenden Inhalte die dazugehörigen Kapitel im <u>Handbuch</u> Kapitel 3.1 ff ein.

Wir möchten in der Folge im Rahmen eines imaginären Tutorial-Projektes, der Software einige Berechnungsaufgaben übertragen.

Wählen Sie gemäss Bild 4 einen geeigneten Namen und eine Beschreibung für das imaginäre Projekt.

Lassen Sie uns anhand eines gängigen Lagertyps, in der Praxis oft verwendete Einstellungen näher betrachten. Gehen Sie davon aus, dass die standardmässigen Voreinstellungen beim Programmstart, für das schrittweise Herangehen einer übliche Wälzlagerberechnung, aufgrund der breiten Verwendung ein guter Einstieg darstellt.

4.3 Einstellungen unter 'Allgemein'

4.3.1 Generell

Dieses Tutorial gibt einen vereinfachten Überblick über die unter 'Allgemein' aufgeführten Einstellungen, die hier entweder genutzt werden oder für das Verständnis wichtig sind. Dabei konzentrieren wir uns auf die wesentlichen Punkte und bitten um Verständnis, wenn wir einige Funktionen nur an der Oberfläche erwähnen und andere überspringen werden.

Belassen Sie vorerst alle Einstellungen so wie sie bei Programmstart standardmässig geschaltet sind.

4.3.2 Faktor alSO

Der <u>Faktor alSO</u> 'modifiziert' die nominelle – und Refe-

|--|

renz-Lebensdauer derart, dass eine realistischere Prognose für die tatsächliche Einsatzdauer des Wälzlagers geliefert wird. Ein Wert von 1 entspricht normalen Bedingungen, während Werte über 1 günstige Bedingungen definieren. Die Formel 26 aus ISO 281 definiert die Derivation mir Lagerfaktor (f), Ermüdungsgrenzbelastung (Cu) und Äquivalente Belastung (P) wie folgt:

$$a_{\rm ISO} = f\left(\frac{e_{\rm C} C_{\rm U}}{P}, \kappa\right)$$

Die Faktoren eC (Verunreinigungsbeiwert) und κ (Viskositätsverhältnis) berücksichtigen die Verschmutzung und den Zustand der Schmierung.

Die ISO 281 begrenzt diesen Faktor auf alSO ≤ 50.

-....

4.3.3 Fliehkraft

Die Berücksichtigung der <u>Fliehkraft</u> erhöht die Belastung am Aussenring und verringert die Belastung am Innenring. Dies führt zu unter-

✓ Fliehkraft berücksichtigen

schiedlichen Druckwinkeln am Innen -und Aussenring und daher zu einem erhöhten Bohr-zu Roll-Verhältnis.

4.3.4 Temperaturgradient in Passungen

Temperaturgradient in Passungen berücksichtigen

Ist die Option '<u>Temperaturgradient in Passungen be-</u>rücksichtigen' aktiviert, können zusätzlich zu Innen-

und Aussenringtemperaturen auch Wellen- und Gehäusetemperaturen eingegeben werden. Dies ist erforderlich, wenn Temperaturgradienten berücksichtigt werden sollen. Siehe dazu auch Kapitel <u>5.2.6</u>.

4.3.5 Berechnung für Spiellage

Für die Berechnung kann entweder der minimale, minimal erwartete, mittlere, maximal

erwartete, maximale oder benutzerdefinierte Wert aus dem zugrundeliegenden Passungs- und Nominalspiel-Toleranzspektrum verwendet werden.

Berechnung für mittleres Spiel

4.3.6 Wälzkörpertemperatur

Wälzkörper hat maximale Temperatur	Die <u>Wälzkörpertemperatur</u> beeinflusst da	S
	resultierende Betriebsspiel. Diese kann au	ıf

Ringtemperatur, auf gemittelte Ringtemperatur oder durch eigenen Eingabe zugewiesene Temperatur eingestellt werden.

4.3.7 Elastische Aufweitung Ringe

Das unter realistischer Betrachtung entstehende Ausdehnen oder Schrumpfen von La-

Elastische Aufweitung der Ringe wird nicht berücksichtigt 🛛 🗸 🕂

gerringen wie etwa aus axialer Vorspannung, beeinflusst die resultierende Vorspannung oder die Passungsüberdeckung. Diese wichtigen Einflüsse können durch zuschalten von '<u>Elastische Aufweitung der Ringe</u>' in der Berechnung numerisch approximiert werden. Siehe dazu auch <u>Kapitel 5.2.5</u>.

Weiterführende Informationen zu elastischer Aufweitung entnehmen Sie bitte dem <u>Handbuch</u> unter Kapitel 3.1.1.17.

4.3.8 Lastkollektiv

Lastkollektiv verwenden

Eine weitere Methode zur Analyse des Anwendungsverhaltens besteht darin, verschiedene Bedingungen oder Lastzustände zu be-

rücksichtigen. Wenn das Kontrollkästchen für '<u>Lastkollektiv verwenden</u>' aktiviert ist, wird die Eingabemaske unter dem Reiter 'Belastung' als Eingabe-Tabelle dargestellt. Siehe dazu auch Kapitel <u>5.4.3</u>.

4.3.9 Erweiterte Lebensdauer

Wenn dieses Flag gesetzt ist, wird die <u>erweiterte Lebensdauer</u> für ISO 281 und ISO 16281 berechnet. Dies erfordert Informationen über das Schmierkonzept und potentielle Kontamination.

Erweiterte Lebensdauer berechnen

MESYS AG Technoparkstrasse 1 CH-8005 Zürich info@mesys.ch T: +41 44 455 68 00

4.4 Wälzlagergeometrie

4.4.1 Generell

Die aktuelle Version der MESYS Wälzlagerberechnung sieht inkl. Untertypen 31 Wälzlagerausführungen zur Berechnung vor. Unter dem Reiter 'Wälzlagergeometrie' (Bild 5) kann der gewünschte Lagertyp mittels Dropdown vorgewählt werden.

Über die 🕂 -Schaltfläche können noch weitere, zahlreiche Einstellungen vorgenommen werden (Bild 5). Wir möchten diese jedoch gerne in weiterführenden Schriften näher erläutern.

> Bitte belassen Sie die standardmässigen Voreinstellungen.

Allgemein	Wälzlagergeometrie	Lagerkonfiguration	Werkstoff und Schmierung	Bela				
Dillerational				7				
Rillenkugeli	ager		~	_				
Rillenkugell	ager							
Rillenkugell	ager (zweireihig)							
Axialrillenku	igellager							
Schrägkuge	llager llager (zweireihig)							
Avialschräg	kugellager							
Axialschräg	kugellager (zweireibig)	🔞 Optionen für ausg	ewählten Wälzlagertyp			×		
Vierpunktla	der (radial)							
Vierpunktla	ger (avial)	🗌 Wälzlager mit Füll	nut					
Dreipunktla	ger (aeteilter Innenring)	Welle ist Lagerinn	enring					
Dreipunktla	ger (geteilter Aussenring)	Gehäuse ist Lagera	ussenring					
Pendelkuge	llager (einreihig)							
Pendelkuge	llager (zweireihig)	Ringdurchmesser	für die Berechnung des Presssitzes au	s äquivalentem	Querschnitt			
Duplex Lager I Tragzahlen für Hybridlager automatisch berechnen								
Zylinderroll	enlager	🗌 Tragzahlen für Hyl	oridlager berechnen					
Zylinderroll	enlager (zweireihig)	X/V-Eaktoren auf	asis des freien Druchwinkels berechn	en				
Nadellager						1		
Axial-Zylind	lerrollenlager	Zulässiges Längenver	hältnis Druckellipse		100	%		
Axial-Zylind	lerrollenlager (zweireihig)	Minimale Pressung fü	r die Ausdehnung der Druckellipse	pmin(eLR)	1	MPa		
Kegelrolleni	ager	ISO Schmiegunge	n im Falle kleiner Schmiegungen verw	/enden				
Kegelrollen	ager (zweireihig)	Granzwart für die Kon	formität für die dynamische Traggabl	f limCr	0.515	1		
Axial-Kegel	rollenlager	Grenzwert für die Kon	ronnitat für die dynamische fragzani	1_IIIICI	0.515	1		
Tonnenlage	r	Grenzwert für die Kon	formität für die statische Tragzahl	f_limC0r	0.515			
Toroidallage	er	Toleranz für die Konfo	rmität Innenring	Δfi	0]		
e Pendelrolle	nlager	Toleranz für die Konfo	mität Aussenring	٨fe	0	1		
Halbes radia	ales Pendelrollenlager	forcialization die Rome	and Aussenning	ше		1		
Axial-Pende	elrollenlager	Reibwert für Montage	1	µfit	0.1			
Kreuzrollen	ager (radial)	Reduktion der Tragza	hl aufgrund der Härte gemäss Harris			\sim		
Kreuzrollen	ager (axial)			OK	Abbre	chen		
Schrägroller	niager (radial)			OK		enen		
Schrägroller	niager (axial)							
					В	ild 5		

Auf der rechten Seite können wir über Dropdown die Modalität der Eingabe für Bauart der Wälzlager zuweisen. Hier stehen deren 5 zur Verfügung (Bild 6):

Allgemein	Wälzlagergeometrie	Lagerkonfiguration	Werksto	ff und Schmie	rung	Bela	astung Stützrollen		
Rillenkugella	ager				~	÷	Eingabe der Aussenge	eometrie	~
Innendurchn	nesser		d	0	mm	÷	Eingabe der Aussenge Eingabe der Aussenge	eometrie eometrie und der Tragzahlen	
Aussendurch	imesser		D	0	mm	÷	Eingabe der Innengeo	ometrie metrie und der Tragzablen	
Lagerbreite			В	0	mm		Lingabe der innenged Lager aus Datenbank	wählen	
Anzahl Wälz	körper		Ζ	0			Lagerspiel		Eigene Eingabe als Betriebsspiel $\ arphi$
Durchmesse	r Wälzkörper		Dw	0	mm		Diametrales Lagerspiel		Pd 0 mm 😑
Teilkreis			Dpw	0	mm				
Konformität	Innenring		fi	0.52					
Konformität	Aussenring		fe	0.52]				
Schulterhöhe	e Innenring		dSi	0	mm	÷			
Schulterhöhe	e Aussenring		dSe	0	mm	÷			

Bild 6

4.4.2 Eingabe über Aussengeometrie

Es stehen über diese Modalität lediglich die Aussenmasse eines Lagers für dessen Definition zur Verfügung.

Allgemein Wälzlagergeometrie Lagerkonfiguration W	kstoff und Schmierung Belastung Stützrollen		
Rillenkugellager	Eingabe der Aussengeometrie		~
Innendurchmesser	0 mm 🔂 Dynamische Tragzahl	253	Cr 0 kN
Aussendurchmesser	0 mm 🔂 Statische Tragzahl	230	C0r 0 kN
Lagerbreite	0 Ermüdungsgrenzbelastung		Cur 0 kN
Dies kann die Wahl sein, wenn Innen	ometrie und Tragzahlen nicht bekannt	Cr 35.888 kN	Bild 7
sind. Die Software rechnet diese nach	rstem <u>Berechnungsbefehl</u> auf Basis ge-	C0r 21.3049 kN	
nerischer Innengeometrie und gemäs	ISO 281, sowie ISO 76 (Bild 7).	Cur 1.11028 kN	

Innendurchmesser	d 40 mm 🔂	Üb
Aussendurchmesser	D 80 mm 🕂	La
🔞 Verformung des Aussenringes definieren	×	de
Verformung der Laufbahn	O Spaltweite zwischen Lagerring und Gehäuse	ge
Art der Eingabe	Punktdaten 🗸	
ψ [°] u_r [mm] u_x [mm] n [mrad]	•	Bild 8

Über die 🕂 -Schaltflächen (Bild 8), können den Laufbahnen örtliche Verformungen vergeben werden. Wir möchten diese spezifische Option jedoch gerne in weiterführenden Schriften näher erläutern.

4.4.3 Eingabe der Aussengeometrie und der Tragzahlen

Zusätzlich sind mit dieser Modalität auch die Felder für Dynamische -, Statische Tragzahl und Ermüdungs-Grenzbelastung beschreibbar (Bild 9).

Wenn die Tragzahlen nicht bekannt sind, können die Felder auch unbeschrieben belassen werden. Die Software rechnet diese nach <u>Berechnungsbefehl</u> auf Basis generischer Innengeometrie und gemäss ISO 281, resp. ISO 76.

Allgemein Wälzlagergeometrie	Lagerkonfiguration Werk	kstoff	und Schmierung	Belas	tung Stützrollen				
Rillenkugellager			~	÷	Eingabe der Aussengeometrie und der Tragzahlen				\sim
Innendurchmesser	d	i 4	40 mm	÷	Dynamische Tragzahl	ES.	Cr	25.735	kN
Aussendurchmesser	D) [8	80 mm	÷	Statische Tragzahl	B	C0r	15.9028	kN
Lagerbreite	в	3 2	23 mm	I	rmüdungsgrenzbelastung		Cur	0.828755	kN
									Bild 9

4.4.4 Eingabe der Innengeometrie

4.4.4.1 Generell

Die substantiellen Werte welche die Innengeometrie definieren, können über diese Modalität (Bild 10) in die entsprechenden Felder eingegeben werden.

Die Tragzahlen werden nach dem ersten Berechnungsbefehl auf Basis der eingegebenen Werte der Innengeometrie und gemäss ISO 281 und ISO 76 gerechnet und eingetragen.

Allgemein	Wälzlagergeometrie	Lagerkonfiguration V	/erksto	ff und Schmier	rung	Bel	astung Stützrollen	
Rillenkugellager 🗸					\sim	÷	Eingabe der Innengeometrie	~
Innendurchm	nesser		d	40	mm	÷	Dynamische Tragzahl	Cr 35.888 kN
Aussendurch	messer		D	90	mm	÷	Statische Tragzahl	C0r 21.3049 kN
Lagerbreite			в	23	mm		Ermüdungsgrenzbelastung	Cur 1.11028 kN
Anzahl Wälzk	örper		z	8		÷	Lagerspiel	Eigene Eingabe als Betriebsspiel $$
Durchmesser	Wälzkörper		Dw	14	mm		Diametrales Lagerspiel	Pd 0 mm 😑
Teilkreis			Dpw	65	mm	☆		
Konformität	Innenring		fi	0.52]			
Konformität	Aussenring		fe	0.52]			

Bild 10

4.4.4.2 Anzahl Wälzkörper

Anzahl Wälzkörper	Z 8
Durchmesser Wälzkörper	R Parameter eingeben X
Teilkreis	🗹 Anzahl Wälzkörper eingeben
Konformität Innenring	Maximaler Füllwinkel ψREmax 300 °
Konformität Aussenring	Minimaler Abstand zwischen Wälzkörpern δREmin 1 mm
Schulterhöhe Innenring	OK Abbrechen

Die <u>Anzahl Wälzkörper</u> Z kann über die rechtsstehende - Schaltfläche automatisch auf Basis eines maximalen Füllwinkels und eines minimalen Abstands zwischen den Wälzkörpern berechnet werden. Wir möchten diese spezifische Option (Bild 11) gerne in weiterführenden Schriften behandeln.

Bild 11

4.4.4.3 Durchmesser Wälzkörper

Bei Kegelrollenlagern wird der Durchmesser der Rollenmitte als Eingabe verwendet, sofern dieser bekannt ist.

Durchmesser Wälzkör	per	Dw 0	m	m 😑	Mit	der 믐 -
Teilkreis		Dpw 0	m	*	zahl	l der Wä
Druckwinkel		α 0	•	÷	vor	gegebene
Konformität Innenring	🔞 Z, Dw aus Schadensfrequenzen berech	nen	1	×	rect	net wer
Konformität Aussenrii	Drehzahl Innenring	ni	60	rpm	wer ein	den, wer Lager ang
Schulterhöhe Innenrir	Drehzahl Aussenring	ne	0	rpm	ried	laten fehl
Schulterhöhe Aussenr	Teilkreis	Dpw	60	mm		
	Schadensfrequenz Innenring	fip	8.0641	1/s		
	Schadensfrequenz Aussenring	fep	5.9359	1/s		
	Schadensfrequenz Wälzkörper	frp	4.9230	1/s		
esultateübersicht	Anzahl Wälzkörper	Z]	z	14
Referenzlebensdauer	Durchmesser des Wälzkörpers	Dw		mm	Dw	11.9061
Statischer Sicherheitsfak	Nenndruckwinkel	α		۰	α	39.9978
	ОК	Berechn	en Abbre	chen	Bild 12	

Mit der E-Schaltfläche können die Anzahl der Wälzkörper, der Durchmesser der Rolle und der Druckwinkel aus den vorgegebenen Schadensfrequenzen berechnet werden. Dies kann verwendet werden, wenn Schadensfrequenzen für ein Lager angegeben sind, aber Geometriedaten fehlen (Bild 12).

> mm °

Bitte begeben Sie sich auf eine Hersteller Produkteseite und laden Sie die Produktdaten eines Schrägkugellagers 7208 mit Nachsetzzeichen 'B' Alternativ verwenden Sie diejenigen aus Bild 13.

PRODUKTINFORMATIONEN	TECHNISCHE INFORMATIONEN	BERECHNUNG		
- a	Einheiten	 Imperial 		
	Hauptabme	ssungen und Leistu	ngsdaten	
	d	40 mm	Bohrungsdurchmesser	
	h D	80 mm	Außendurchmesser	
	в	18 mm	Breite	
	Cr.	36.000 N	Dynamische Tragzahl, radial	
B B	Cor	23.500 N	Statische Tragzahl, radial	
	Cur	1.630 N	Ermüdungsgrenzbelastung, radia	

Bild 13 (Quelle: Schaeffler Medias)

Suchen Sie hier nach den Grundfre-	Bezeichnung 7208-B-X	L-TVP	
quenzen.	Grundfrequenzfaktoren bezogen auf 1/s		
	Überrollfrequenzfaktor am Außenring	BPFFO	5,9359
Grundfrequenzen (PDF)	Überrollfrequenzfaktor am Innenring	BPFFI	8,0641
	Überrollfrequenzfaktor am Wälzkörper	BSFF	2,4615
	Ringkontaktfrequenzfaktor am Wälzkörper	RPFFB	4,9230
	Drehzahlfaktor des Wälzkörpersatzes für drehenden Innen	ring FTFF_i	0,4240
Bild 14 (Quelle: Schaeffler Medias)	Drehzahlfaktor des Wälzkörpersatzes für drehenden Außer	nring FTFF_o	0,5760

Gehen Sie zu Reiter Wälzlagergeometrie und übertragen Sie die Daten unter 'Eingabe der Innengeometrie'. Öffnen Sie den Dialog bei 'Durchmesser Wälzkörper' über die 💳 - Schaltfläche (Bild 12).

Tragen sie die Grundfrequenzen wie in Bild 14 dargestellt ein und starten Sie die Berechnung über den offenen Dialog zur Eingabe der Schadensfrequenzen.

Bitte überprüfen Sie die Resultate Z / Dw / α über Abgleich mittels Bild 12.

4.4.4.4 Teilkreis

Beim Teilkreis-Durchmesser handelt es sich um den Durchmesser zwischen den Mittelpunkten der Wälzkörper. Sollte dieser Wert nicht bekannt sein, kann approximativ auch der mittlere Durchmesser des inneren und äusseren Lagerdurchmessers hergenommen werden.

4.4.4.5 Druckwinkel

Der Druckwinkel muss für Schrägkugellager, Vierpunktkugellager, Pendelkugellager, Kegelrollenlager und Pendelrollenlager angegeben werden.

Für Kegelrollenlager wird der Winkel am Aussenring verwendet, da dies die Richtung der Kraft ist.

Mit der 🐈 -Schaltfläche kann die Richtung des Druckwinkels gewählt werden.

Bitte runden Sie den unter <u>4.4.4.3</u> errechneten Druckwinkel auf 40° und stellen Sie ihn für eine nachfolgende Axialbelastung in Richtung x-positiv auf eine Lage links.

Bild 15

4.4.4.6 Konformität

Die Konformität ist das Verhältnis zwischen dem Krümmungsradius eines Lagerringes und dem Kugeldurchmesser. Aus geometrischen Gründen muss der Wert grösser als 0,5 sein. Bitte entnehmen Sie weiterführende Informationen mit Bezug zu den Normen aus entsprechendem Kapitel 3.1.2.10 im Handbuch.

Konformität Innenring	fi 0.52 📃
Konformität Aussenring	fe 0.52 📃
	Radien für Laufbahnen eingeben X
	Krümmungsradius Innenring ri 6.19117 mm
	Krümmungsradius Aussenring re 6.19117 mm
	OK Abbrechen
	Bild 16

Die Konformität kann direkt eingegeben werden (Bild 16) oder alternativ auch über die betroffenen Radien, indem der entsprechende Dialog mittels 🚍 - Schaltfläche geöffnet wird.

Bitte vergeben Sie f
ür die Konformit
ät fi / fe = 0.52.

4.4.4.7 Schulterhöhe Innen - & Aussenring

Um den aktuellen Zustand der Kontaktellipse und eine eventuelle Ausdehnung über die Schulter hinaus zu beobachten, wird diese laufend bewertet. Der erforderliche Schulterdurchmesser kann in der <u>Resultate-Übersicht</u> und im Haupt-Protokoll zusammen mit einem Längenverhältnis eLR_i, eLR_e ausgegeben werden, was eine Si-

cherheit bezüglich der Mindest-Schulterlänge darstellt. Das Längenverhältnis ist definiert als die Länge vom unteren Ende der Kontaktellipse bis zur Schulter (die grüne Linie in der Grafik) geteilt durch die Länge der Kontaktellipse (rote Linie in der Grafik aus Bild 17). Der Wert sollte daher grösser als 1 oder 100% sein.

Schulterhöhe Innenring	dSi 55.2376 mm 🕂
Schulterhöhe Aussenring	dSe 64.7624 mm 🕂
	🚱 Faktor für Schulterhöhe eingeben 🛛 🗙
	🗹 Faktor für Schulterhöhe eingeben
	Faktor für Schulterhöhe Innenring fSi 30 %
esultateübersicht	Faktor für Schulterhöhe Aussenring fSe 30 %
Referenzlebensdauer	OK Abbrechen
Bild 18	

Statt mit einem absoluten Wert dSi / dSe kann die Schulterhöhe

auch mit einem Prozentsatz des Kugeldurchmessers definiert werden (Bild 18). Ein Faktor von 50% würde eine Schulter bis zum Teilkreisdurchmesser bedeuten, so dass der Faktor für die

meisten Lagertypen zwischen 10% und 40% liegen sollte. Die Verwendung dieses Faktors ermöglicht eine Standard-Geometrie bei Änderung des Kugeldurchmessers oder der Teilung. Bitte sehen Sie für ausführlichere Information dazu das <u>Handbuch</u> in Kapitel 3.1.2.15.

4.4.5 Eingabe der Innengeometrie und der Tragzahlen

Da die Lagerhersteller häufig grössere Tragzahlen verwenden als die nach den Normen berechneten ist es möglich, nebst Innengeometrie auch die Tragzahlen einzutragen. Die Tragzahlen werden dann für die Berechnung der Lebensdauer verwendet.

Eingabe der Innengeometrie und der Tragzahlen		\sim
Dynamische Tragzahl	Cr 36 kl	N
Statische Tragzahl	C0r 23.5 kl	N
Ermüdungsgrenzbelastung	Cur 1.63 kl	N
	Bild	119

Bitte übertragen Sie die Tragzahlen des imaginären Herstellers und starten Sie die Berechnung.

Beobachten Sie die Änderungen in der Resultateübersicht am unteren Rand der Benutzeroberfläche.

Resultateübersicht	t	5
Maximale Pressung	pmax 0.00103878 MPa Statischer Sicherheitsfaktor SF 9999 Statischer Sicherheitsfaktor (ISO 17956) S0eff 99.99	
Äquivalente Belastung	Pref 0 N Viskositätsverhältnis κ 0 Freier Druckwinkel α0 40 °	
Effektives diametrales Lagerspie	el Pdef 0.22284 mm Effektives axiales Lagerspiel Paef 0 mm Maximum Bohr- zu Roll-Verhältnis maxSpinToF 0	
Maximale Differenz der Druckw	inkel Δα 0 °	

Eine Lebensdauer wird hier erst ausgegeben, wenn eine Drehzahl vergeben ist.

Bild 20

4.4.6 Lager aus Datenbank wählen

Schrägkugellag	jer					\sim	÷	Lager aus Datenbank wählen
Innendurchmes	ser		d	40	m	m 🕂	<u>~</u>	Dynamische Tragzahl
Aussendurchme	esser		D	80	m	m 🕂	\checkmark	Statische Tragzahl
Manufacturer	name	di [mm]	De [mm]	B [mm]	alpha [°]	C [kN]	^	Ermüdungsgrenzbelastung
JTEKT	7208C	40	80	18	15	45.4		Lagerspiel
JTEKT	7208B	40	80	18	40	38.2		Axialspiel
JTEKT	7208	40	80	18	30	42		
CSC	B7208-E-T-P4S	40	80	18	25	34.7		
CSC	B7208-C-T-P4S	40	80	18	15	36.3		Bild 21

Anstatt die Wälzlagergeometrie durch den Anwender einzugeben, kann diese aus einer Datenbank gewählt werden (Bild 21). Innen- und Aussendurchmesser können optional definiert werden. Dies schränkt die Anzahl der in der Liste angezeigten Lager ein.

Durch Anklicken der Spaltenbezeichnung können die Daten entsprechend dieser Spalte auf- oder absteigend dargestellt werden.

Allgemein	Välzlagergeometrie	Lagerkonfigura	tion W	erkstoff u	nd Sch	mierung Belastung Stützrollen			
Schrägkugellag	jer			``	· 🕂	Lager aus Datenbank wählen	~		
Innendurchmes	ser	d	40	mm	⊹ ⊡] Dynamic load rating	Cr 0 kN		
Aussendurchme	esser	D	80	mm	⊹ ⊡	Static load rating	C0r 0 kN		
Manufacturer	name	di [mm]	De [mm]	B [mm]	alpi ^	Ermüdungsgrenzbelastung	Cur 0 kN		
						Lagerspiel	Eigene Eingabe als Betriebsspiel $ \smallsetminus $		
SKF	*7208 BEGAP	40	80	18	40	Axialspiel	Pa 0 µm 😑		
SKF	*7208 BECBY	40	80	18	40				
SKF	*7208 BECBP	40	80	18	40	Filtern Sie ein gene	erisches Schrägkugella-		
SKF	*7208 BECBM	40	80	18	40	ger mit d = 70 mm,	D = 80 mm, B = 18 mm,		
SKF	*7208 BECBJ	40	80	18	40	und $\alpha = 40^\circ$, ans	chliessend klicken Sie		
SKF	7208 BE-2RZP	40	80	18	40	doppelt darauf. Na	ch erfolgter Wahl kann		
SKF	*7208 ACCBM	40	80	18	25	mittels Umschalten auf etwa 'Eingabe Aussengeometrie' der zugrundelieger			
Generic	7208B	40	80	18	40 🗸	Druckwinkel einges	sehen werden.		
1	P				>				

4.4.7 Lagerspiel

4.4.7.1. Generell

Das Lagerspiel kann nach (ISO 5753, 2009) (C2...C5) für Rillenkugellager, Vierpunktlager, Pendelkugellager, Pendel- und Zylinderrollenlager automatisch eingestellt werden. Zusätzlich gibt es die Einstellungen 'aus Datenbank', 'Ei-

Lagerspiel	Eigene Eingabe als Bereich 🛛 🗸 🗸
Axialspiel Lager mit Druckwinkel Toleranz des Lagers	Aus Datenbank Eigene Eingabe als Betriebsspiel Eigene Eingabe
	Eigene Eingabe als Bereich
-	Bild 23

Radiales Lager

gene Eingabe als Betriebsspiel' und 'Eigene Eingabe / als Bereich'.

Je nach Lagerausführung, also ob reines Radiallager, Lager mit Druckwinkel oder reines Axiallager, listet die Software die entsprechenden Eingabefelder.

0	
Im Rahmen dieses 'Starter Tutorial' ist es aufgrund	l des potentiellen Umfangs nicht möglich, im Detail auf alle
Arten mit entsprechenden Eingabefelder einzugehe	en. Bitte sehen Sie für die entsprechenden Inhalte die dazu
gehörigen Kapitel im Handbuch Kapitel 3.1.2.17 ff e	in.

Diametrales Lagerspiel

Toleranz des Lagers

Lagerspiel

4.4.7.2 Eigene Eingabe

Diese Einstellung ermöglicht die Eingabe des Lagerspiels vor dem Einbau (Bild 25). Einflüsse von Temperatur

		Bild 25
Lagerspiel	Eigene Eingabe	~
Axialspiel	Pa 0	µm 😑

oder Übermass werden zusätzlich berücksichtigt. Dies ist die empfohlene Einstellung, wenn Sie beispielsweise die Spieländerung in der zu betrachtenden Anwendungsbedingung analysieren wollen.

4.4.7.3 Berechnung von Axialspiel

Im Falle einer Axialspieleinstellung wie etwa bei radialen Wälzlagern mit Druckwinkel (Bild 26), kann über die - Schaltfläche im Dialog ein effektives Lagerspiel über Vorspannkraft errechnet werden. Eine nominelle -, unmontierte -, montierte oder effektive Vorspannkraft kann dafür vergeben werden.

Es stehen mehrere Möglichkeiten für

die Eingabe der Vorspannkraft zur Verfügung:

- Die Berechnung mit "Fp" verwendet den seitens Hersteller deklarierten Vorspannwert der Lager.
- Die Berechnung mit "Fpu" verwendet den seitens Hersteller deklarierten Vorspannwert der Lager zusammen mit einer unbegrenzten radialen elastischen Ausdehnung. Diese Option kann verwendet werden, wenn der Hersteller die Vorspannwege mittels der vorspannwert-entsprechende Messlasten ermittelt.
- Die montierte Vorspannkraft "Fpm" wird mit Vorspannwerten nach der Montage berechnet, aber ohne Temperatur- und Drehzahleffekte.
- Die effektive Vorspannkraft "FpEff" wird mit den Vorspannwerten nach der Montage und unter Berücksichtigung von Temperatur und Drehzahl berechnet.

Zur Beachtung:

Es muss ggf. mit dem Hersteller geklärt werden, wie der Vorspannweg (Axialspiel, Pa) zur deklarierten Vorspannkraft ermittelt wird. Damit kann die korrekte Art der Axialspielberechnung gewählt werden.

				В	ild 26
Lagerspiel	Eig	ene Ein	igabe		\sim
Axialspiel		Pa	0	μm	
Toleranz des Lagers	🔞 Berechnung von Axialsp	oiel Pa			х
Passung zur Welle	Effektives axiales Lagerspiel	Paeff	-0.013955	mm	0
Oberflächenrauheit der Welle	Vorspannkraft	Fp	0	N	۲
Innendurchmesser der Welle	Vorspannkraft unmontiert	Fpu	0	N	0
Passung zum Gehäuse	Vorspannkraft montiert	Fpm	1310.58	N	0
Oberflächenrauheit Gehäuse	Effektive Vorspannkraft	FpEff	1310.58	N	0
Aussendurchmesser Gehäuse		(OK Ab	breche	n

Bild 24

0.119103

Eigene Eingabe als Bereich

ISO 492 - PO

Pd

Bei Definition von Lagerspiel für reine Radiallagern, wird an der Stelle ein Dialog mit den lagerbauart-entsprechenden Eingabefelder geöffnet.

4.4.7.4 Vorspannklassen für radiale Schrägkugellager

Für radiale Schrägkugellager kann eine Vorspannklasse aus der Lager-Datenbank definiert werden, sofern diese Informationen dazu übertragen wurden

	Bild 27
Lagerspiel	Leichte Vorspannkraft 🛛 🗸
Avialanial	Leichte Vorspannkraft
Axialspiel	Mittlere Vorspannkraft
Toleranz des Lagers	Schwere Vorspannkraft

(Bild 27). Für GMN-Produckte etwa stehen zusätzliche Auswahlen zur Verfügung, wie 'Leichte Vorspannkraft', 'Mittlere Vorspannkraft' und 'Schwere Vorspannkraft'.

Bitte wählen Sie für 'Lagerspiel' die 'Eigene Eingabe'.

,	Lagerspiel	Eigene Eingabe	~

Im Rahmen unseres Beispiels möchten wir annahmeweise davon ausgehen, dass die resultierenden Vorspannwege (Pa) des imaginären Herstellers, aus deklarierten vorspannkräften-entsprechenden Messlasten entstammen.

		Axiale Lagerluft, Vorspannung und Vorspannkraft von Lager- sätzen mit Universallagern in O- oder X-Anordnung für die		Axiale Lagerluft, Vorspannung und Vorspannkraft von Lager- sätzen mit Universallagern in O- oder X-Anordnung für die							Vorspannkraft F _{V max} N			
		Toleranzklassen Normal, 6, 5		UA	UB	UO	UL				UL			
le: SKI	1	UA = Lager mit geringer Axialluft		Lage	erreih	e								
	1	UB = Lager mit geringerer Axialluft als UA UO = Lager spielfrei bei O- und X-Anordnung UL = Lager leicht vorgespannt		70	B, 72	В,	70B	72B	73B	74B	70B	72B	73B	
				73B, 74B										
			00	22	14	0	-	-3	-	-	-	38	-	
			01	24	15	0	-	-4	-5	-	-	53	82	
			02	24	15	0	-	-4	-5	-	-	62	99	
	in da		03	24	15	0	-	-4	-6	-	-	77	123	
weisen si	ie de	m 7208B eine vorspan-	04	28	16	0	-4	-5	-6	-8	103	103	146	
nung gemäss seitens eines imaginären Herstellers gegebener Klasse UL zu.		05	34	19	0	-4	-4	-6	-8	115	112	200		
		06	34	19	0	-5	-5	-7	-8	141	157	250		
			07	40	22	0	-5	-6	-7	-9	172	208	300	
Bild 29 (Quelle Schaeffler, I	HR1)		08	40	22	0	-5	(-6)	-8	-10	200	246	385	

Bild 29 (Quelle Schaeffler, HR1)

Es ist aus den Katalogangaben (Bild 29) ersichtlich, dass eine solche unmontierte Vorspannung in einem Duplex Set in O- oder X-Anstellung in vorstehender Dimension und Druckwinkel, einem Vorspannweg (Pa) von 6 µm entspricht.

Die Software gibt einen Verschiebeweg Pa für 246 N Vorspannung unmontiert entsprechend der Wirkung am Einzellager, also in der Grössenordnung von (Vorspannweg Duplex = $-6 \mu m$) / 2 = $-3 \mu m$ (Bild 30).

	Lagerspiel	E	igen	e Ein	gabe			~
	Axialspiel		Р	a	-3.03731		μm	=
	Toleranz des Lagers	🔞 Berechnung von Axial	lspie	l Pa				\times
	Passung zur Welle	Axialspiel nach Montage	I	Pam	-0.010207	3] mm	0
	Oberflächenrauheit d	Effektives axiales Lagerspi	iel P	aeff	-0.010207	3	mm	0
	Innendurchmesser de	Vorspannkraft		Fp	272.233		N	0
	Passung zum Gehäus	Vorspannkraft unmontier	t	Fpu	246		N	۲
	Oberflächenrauheit G	Vorspannkraft montiert		Fpm	1423.07		N	0
	Aussendurchmesser	Effektive Vorspannkraft	F	pEff	1423.07] N	0
				C	Ж	Ab	brech	en

4.4.8 Toleranz des Lagers 4 4 8 1 Allaemein

4.4.0.1 Allyethelli			
Toleranz des Lagers	ISO 492 - P0 🗸	-	ISO 492 - P0 V
Deserves and Malla	Nicht berücksichtigt	•	
Passung zur Weile	Nennmass		kō 🔂
Oberflächenrauheit der Welle	Übermass definieren		Rz 4 um
	Mehrlagigen Presssitz definieren		
Innendurchmesser der Welle	Eigene Eingabe		dsi 0 mm
Passung zum Gehäuse	ISO 492 - P0	11	117
r assung zum ochbase	ISO 492 - P6		
Oberflächenrauheit Gehäuse	ISO 492 - P5	Ш	Rz 4 µm
Aussendunghmannen Cabilitien	ISO 492 - P4		
Aussendurchmesser Genäuse	ISO 492 - P2	1	dhe 0 mm

Die Lagertoleranz kann nach ISO 492 (P0...P2) berücksichtigt werden. Die weiteren Eingabefelder in diesem Bereich ermöglichen die Schnittstellen zum Wälzlager, wie Passung Rauheit und Beschaffenheit der

Welle (Innendurchmesser) und Gehäuse (Aussendurchmesser) zu beschreiben (Bild 31).

Nebst den möglichen Einstellungen über Toleranzklassen aus ISO 492, kann '<u>Nicht berücksichtigt</u>' gewählt werden, wobei das Lager für die Berechnung nur den Temperaturen ausgesetzt wird. Bei '<u>Nennmass</u>' wird davon ausgegangen, dass es keinen Toleranzbereich gibt.

Ergänzende Informationen zu Lagertoleranzen finden sich unter Handbuch Kapitel 3.1.2.20.

Nebst der Lagertoleranz sind die im vorhergehenden Kapitel beschriebenen Definition des Lagerspiels / Vorspannung (<u>4.4.7</u>), die Wirkung der nachfolgend einzugebenden Drehzahl und Temperaturen, sowie eine eventuelle Ausdehnung der Ringe aufgrund von Verspannung (<u>5.2.4</u>) ebenso wichtige Eingabegrössen um die Reaktion eines Wälzlagers zu bewerten. Die Summe der Wirkungen fliesst in die Berechnung der Interferenzen der Lagerringe und somit in das 'Protokoll Toleranzen'. Dazu mehr im Kapitel <u>4.4.8.7</u>.

4.4.8.2 Übermass definieren

Sollte aufgrund von Anwendungsbedingungen nicht klar sein, welche Passung zu wählen sei, kann die Einstellung <u>'Übermass definieren</u>' äusserst hilfreich sein. Damit lässt sich ein kaltes Übermass für ein Soll-Übermass in einem Betriebszustand definieren.

Bitte vergeben Sie eine Hohlwelle (dsi) von 10 mm einen Aussendurchmesser für das Gehäuse (dhe) von 100 mm und ein Spiel an Gehäuse-Aussenring von 3 μm wie in Bild 32 gezeigt.

Toleranz des Lagers		Übermass	definieren		~
Übermass Welle Innenring		lwi	5.5028	μm	
Innendurchmesser der Welle		dsi	10	mm	
Übermass Gehäuse Aussenrin	g	lwe	-3	μm	
Aussendurchmesser Gehäuse		dhe	100	mm	
	🔞 Übermass berechnen				×
	Drehzahl Innenring		ni 8000		rpm
	Übermass im Betrieb Welle - I	Innenring	wiOp 5		μm
Bild 32			ОК	Abbrec	hen

- Der Dialoge öffnen sich über die = Schaltfläche. Bitte vergeben Sie hier eine Drehzahl von 8000 rpm, ein Soll-Übermass von 5 μm innen (Bild 32).
- Ein dynamisches <u>Übermass von 5.5028 μm</u> wird für unseren aktuellen Zustand unter einer nichtmontierten Vorspannung von <u>246 N</u>, bei einer Drehzahl von 8000 rpm und statischer Ist-Überdeckungen von innen 5 und aussen -3 μm errechnet! Daraus lässt sich ein Drehzahleffekt herauslesen.

Wir möchten im Rahmen des <u>Kapitels 5</u> 'Auslegung' anschliessend überprüfen, ob unter dem vorgegebenen Zustand die vorgegebenen Übermasse zielführend berechnet wurden. Bevor wir also auf eine Standard ISO-Passung wechseln, eine Lager-Präzisionsklasse bestimmen, Rauheit vergeben oder Temperaturen annehmen, sollten wir alle beeinflussenden Eingaben vorerst nicht ins Spiel bringen.

4.4.8.3 Berechnungsschritt unter Drehzahl

Lassen Sie uns die Eingabefelder im Reiter 'Belastung' nun entsprechend unserem Beispiel vorab beschreiben.

Allgemein Wälzlagergeometrie Lagerkonfiguratio	n Werkstoff und Schmierung Belastung Stützrollen	
Axialkraft	Fx 991.504 N O Verschiebung	<u>ux</u> 0 μm 🔘
Drehzahl Innenring	ni 8000 rpm 🗹 Innenring rotiert zur Last	
		Bild 33

Bitte setzen Sie die axiale Lager-Verschiebung ux auf 0 (Bild 33). Nehmen Sie für ein entsprechendes Verständnis den spezifischen Inhalt des Reiters 'Belastung' in Kapitel <u>4.7.2</u> zur Kenntnis.

Bitte vergeben Sie dem Lager eine Drehzahl von 8000 rpm und bestimmen Sie 'Innenring rotiert zur Last'.
 Damit geht die Software von einer stationären Belastung auf einen rotierenden Innenring aus (Bild 33).

4.4.8.4 Laufende Ergebnisse

Der Berechnungsschritt wird über den Punkt 'Berechnen' (Bild 34), über F5 oder dann über die entsprechende Ikone unter dem Menü-Band gestartet.

Die thermische Bezugsdrehzahl_nach (ISO 15312, 2018) und die <u>Thermisch zulässige Betriebsdrehzahl</u> nach (DIN 732, 2010) können von der Software berechnet werden. Wir möchten diese gerne in weiterführenden Schriften näher erläutern.

Die <u>Fettgebrauchsdauer</u> (Bild 35) kann mittels Eingaben gemäss der FAG-Berechnungsmethode ermittelt und über den Report ausgegeben werden.

Die <u>Parametervariation</u> (Bild 37) ermöglicht es dem Anwender, Parameterstudien durchzuführen, deren Er-

gebnisse in Tabellen und Grafiken dargestellt werden. Typische Anwendungen sind z.B. die Visualisierung von Lebensdauer über Spiel oder Verschiebungen über Last. Siehe dazu Kapitel 5.4.4.

Parametervariation (stochastisch) unterstützt die Analyse von statistischen Verteilungen.

Bitte aktivieren Sie den <u>Berechnungsvorgang</u>.

Damit erhalten wir eine axiale Belastung Fx von 991.504 N (Bild 38), welche sich aus der nichtmontierten Vorspannung von <u>246 N</u> und der aktuellen Passung ergibt.

Allgemein	Wälzlagergeometrie	Lagerkonfiguration	Werkstoff und	Schmie	rung Belastung	Stützrollen				
		_		1	_		_	_		
Axialkraft		Fx	991.504	N () Verschiebung		ux	0	µm 🔇	9
Radialkraft		Fy	0]N (Verschiebung		uy	0	mm (О
Radialkraft		Fz	0]N (Verschiebung		uz	0	mm (0
Moment		My	0] Nm(🔿 Kippwinkel		ry	0	mrad (۲
Moment		Mz	0] Nm(🔿 Kippwinkel		rz	0	mrad (۲
Drehzahl In	nenring	ni	8000	rpm	🗹 Innenring rotier	t zur Last				
Drehzahl A	ussenring	ne	0	rpm	Aussenring roti	ert zur Last				
Temperatur	Innenring	Ti	20] °C	Temperatur Aussen	iring	Te	20	°C	

Bild 38

men, in denen die Variablen der XY-Achsen miteinander verglichen werden.

4.4.8.5 Menü 'Extras'

- Die Software lässt sich unter 9 Sprachen und nebst metrischen auch US-Einheitensystem bedienen.
- Nebst den Links zu Werkstoff-, Schmierstoff-, Wälzlager-, Toleranz, Hersteller- und Verzahnungswerkzeug-Datenbanken, kann hier auch ein Import aus bestehender Datenbank oder ein verschlüsselter Export von Daten angestossen werden.

				В	ild 39	
ei Berechnung Protokoll Grafiken				Hilfe		
) 🗁 💾 🥵 🗔 🖨			Sp	Sprache		
			Eir	•		
Allgemein Wälzlagergeometrie	Lag		Da	itenbank	•	
Rillenkugellager		÷	Re			
			Liz	enz		
nnendurchmesser			То	ols	•	

- Über '<u>Resultateübersicht</u>' (siehe Kap. 4.4.8.6 unterhalb) lässt sich der Inhalt des am unteren Rand der Benutzeroberfläche befindliche Resultate-Fenster editieren.
- Es finden sich des weiteren Lizenzinformationen und Zusätzliche '<u>Tools</u>' wie die Presssitz-Berechnung, welche sich auch Online befindet¹.

4.4.8.6 Aktuelle Resultateübersicht

Die im Rahmen unserer Beispielberechnung noch nicht zielführenden Inhalte in der Resultateübersicht am unteren Rand der Benutzeroberfläche (Bild 40) zeigen sich wie folgt:

Resultateübersicht							8
Referenzlebensdauer	L10r	234185		Referenzlebensdauer	L10rh	487885	h
Modifizierte Referenzlebensdauer	Lnmr	1.171e+07		Modifizierte Referenzlebensdauer	Lnmrh	2.439e+07	h
Maximale Pressung	pmax	923.627	MPa	Statischer Sicherheitsfaktor	SF	94.0283	
Statischer Sicherheitsfaktor	S0eff	79.4024		Äquivalente Belastung	Pref	456.785	N
Längenverhältnis Druckellipse Innenring	eLR_i	208.571	%	Längenverhältnis Druckellipse Aussenring	eLR_e	256.701	%
Ausdehnung der Druckellipse Innenring	dCimax	53.0167	mm	Ausdehnung der Druckellipse Aussenring	dCemin	68.0584	mm
Viskositätsverhältnis	к	7.97427		Freier Druckwinkel	α0	40	•
Effektives diametrales Lagerspiel	Pdeff	0.203418	mm	Effektives axiales Lagerspiel	Paeff	-0.00578171	mm

4.4.8.7 Protokoll Toleranzen

Mittels dem 'Protokoll Toleranzen' (Bild 41) möchten wir in aktuellem Zustand des Files überprüfen, ob unsere Ziel-Übermasse aus Kapitel 4.4.8.2 korrekt angekommen sind.

Tabelle 1

Bild 40

					Tubelle 1
Eigenschaften für unterschiedliches Spiel		Minimum	Mittelwert	Maximum	Einheit
Nominales axiales Lagerspiel	Ра	-3.04	-3.04	-3.04	μm
Übermass Innenring	lw_i	5.50	5.50	5.50	μm
Effektives Übermass Innenring	lw_iop	5.00	5.00	5.00	μm
Übermass Aussenring	lw_e	-3.00	-3.00	-3.00	μm
Effektives Übermass Aussenring	lw_eop	-3.00	-3.00	-3.00	μm

Bild 41

Das <u>Ziel-Übermass</u> (Iw_iop) ist exakt angekommen (Tabelle 1). Das kalte Übermass von 5.5 (<u>5.5028</u>) μ m wird um den Drehzahleffekt auf 5 μ m verringert.

4.5 Einstellungen unter 'Lagerkonfiguration'

Unter diesem Reiter kann aus einem betrachteten Lagertyp ein Lager-Set zusammengestellt werden. Eine Paarung aus einer mehrfachen Anzahl kann damit dargestellt und berechnet werden. Wir möchten diese Konfigurationsmöglichkeit jedoch gerne in weiterführenden Schriften näher erläutern und im Rahmen dieses Tutorials gerne überspringen. Ergänzende Informationen zu Lagerkonfiguration finden sich unter <u>Handbuch</u> Kapitel 3.1.3.

4.6 Einstellungen unter 'Werkstoff und Schmierung'

4.6.1 Werkstoff

Die Materialeigenschaften für Wälzkörper, Innen- und Aussenring, Welle und Gehäuse werden für die Berechnung der Lastverteilung und der Interferenzen zwischen Lager und Welle/Gehäuse verwendet. Auch Härte, deren Tiefe und Oberflächenrauheit können eingegeben werden (Bild 42).

Allgemein	Wälzlagergeometrie	Lagerkonfigurati	on Werkst	off und Scl	nmierung	Belastung	Stützrollen				
Werkstoff											
Oberfläche	nhärte Innenring		58	HRC	Oberflä	henhärte Auss	enring		58	HRC	
Kernfestigk	eit Innenring	Rm	1200	MPa	Kernfest	igkeit Aussenri	ng	Rm	1200	MPa	
Einhärtetief	fe Innenring	hdi	0	mm	Einhärte	tiefe Aussenrin	9	hd	e 0	mm	
Oberfläche	nrauheit Innenring	Rq	0.114068	µm 対	Oberflä	henrauheit Au	ssenring	Rq	0.114068	μm	*
Oberfläche	nrauheit Wälzkörper	Rq	0.114068	µm 対	Werksto	ff Wälzkörper		Steel		\sim	÷
Werkstoff I	nnenring	Steel		~ 4	Werksto	ff Aussenring		Steel		\sim	÷
Werkstoff V	Velle	Steel		~ 4	• Werksto	ff Gehäuse		Steel		\sim	÷

Diese Datenfelder können auch in den Werkstofftabellen eingesehen werden (Bild 43). Wir möchten diese Eingabemaske mit den dazugehörigen Detailtiefen im Rahmen dieses Tutorials gerne überspringen. Ausführliche Informationen zu Werkstoff finden sich unter <u>Handbuch</u> Kapitel 3.1.5.

Datei Berechnung Protokoll Grafiken	Extra	s Hilfe		
🗋 🗁 💾 🚳 📑 🖨		Sprache	۲	
		Einheitensystem	.⊁.	
Allgemein Wälzlagergeometrie Lag		Datenbank	•	Werkstoff
Schrägkugellager	C	Resultateübersicht		Werkstoff Wälzlager
		Lizenz		Werkstoff DIN743
Innendurchmesser		Tools	•	Werkstoff (orthotrop)
Aussendurchmesser	D	80 m	ım	Werkstoff ISO 6336

Bild 43

4.6.2 Schmierung

ISO VG 100 mineral oil	~
Eigene Eingabe	^
ISO VG 46 mineral oil	
ISO VG 68 mineral oil	
ISO VG 100 mineral oil	
ISO VG 150 mineral oil	
ISO VG 220 mineral oil	
ISO VG 320 mineral oil	
ISO VG 460 mineral oil	
ISO VG 680 mineral oil	
ISO VG 46 mineral oil (EP additives)	×
	Bild 44
Ölschmierung mit Hauptstromfiltern ISO4406 -/17/14	~
Ölschmierung ohne Filterung ISO4406 -/13/10	^
Ölschmierung ohne Filterung ISO4406 -/15/12	
Ölschmierung ohne Filterung ISO4406 -/17/14	
Ölschmierung ohne Filterung ISO4406 -/19/16	
Ölschmierung ohne Filterung ISO4406 -/21/18	
Fettschmierung, hohe Sauberkeit	
Fettschmierung, normale Sauberkeit	
Fettschmierung, leichte bis mässige Verunreinigung	
Fettschmierung, starke Verunreinigung	
Fettschmierung, sehr starke Verunreinigung	~
	Bild 45

Über das linke Drop-Down Menü wird die Wahl einer vordefinierten Qualität mit mineralischem oder synthetischem Grund-Öl sowie einer eigenen Eingabemöglichkeit zur Definition des Schmierstoffes gegeben (Bild 44).

Über das rechte Drop-Down Menü (Bild 45) kann einerseits zwischen Fett- oder Ölschmierung unterschieden werden, aber auch den Filtergrad nach ISO 4406 für Öl- und Verunreinigungsgrad nach ISO 281 für Schmierfett wählen.

					Dilu 4
Der Verunreinigungst	Der Verunreinigungsbeiwert eC wird für die Berechnung des Fak-				×
tors alSO der modifizi	erten Lebensdauer verwo	Verunreinigungs	beiwert eC 0		
Bild 47				ОК	Abbrechen
Schmierung					
ISO VG 46 mineral oil		Ölschmierung ohne Filterung	ISO4406 -/17/14		~ 4
Viskosität bei 40°C	nu40 46 mm²	/s Temperatur		TOil 70	_ • 🖸
Viskosität bei 100°C	nu100 7 mm ²	/s Dichte des Öls		ρ 870	kg/m³
enthält wirksame EP Additive		Druck-Viskositäts-Koeffizient		α 0	1/MPa
					<u> </u>

Das Vorhandensein von EP-Additiven hat gemäss ISO 281 Einfluss auf die Berechnung des Faktors alSO für die modifizierte Lebensdauer.

Ist das Kontrollkästchen hinter der Öltemperatur nicht aktiviert, nimmt die Software für dessen Temperatur die eingestellte Wälzkörpertemperatur an. Siehe <u>4.3.6</u>.

Bitte wählen Sie gemäss Bild 47 eine Viskositätsklasse ISO VG 46 Mineral und eine Ölschmierung ohne Filterung 17/14.

Lassen Sie den eC Verunreinigungsbeiwert unverändert und belassen Sie die Schmierstoff-Temperatur bei bei 70°C.

4.7 Einstellungen unter 'Belastung'

4.7.1 Allgemein

Das Koordinatensystem in MESYS ist wie folgt definiert:

- Richtung X ist als Achsenrichtung definiert.
- Die Y-Achse zeigt nach oben zum ersten Wälzkörper und der Winkel ist positiv um die X-Achse bzw. im rechten Diagramm im Uhrzeigersinn (in Richtung der X -Achse gesehen).
- Der Winkel beginnt beim ersten Wälzkörper auf der Y-Achse mit Null.
- Momente sind positiv, wenn sie um die entsprechende Achse wirken.
- Die Belastung wirkt auf den Innenring, so dass eine positive Belastung in
 Y-Richtung zu einer Belastung der Wälzkörper an der Oberseite führt, wie in Bild 48 dargestellt.

4.7.2 Eingabefelder

Axialkraft	Fx	991.504 N	C) Verschiebung	ux	0 μm 🧕)
Radialkraft	Fy	0 N	C	Verschiebung	uy	0 mm C	С
Radialkraft	Fz	0 N	C	Verschiebung	uz	0 mm C	С
Moment	Му	0 Nn	m C) Kippwinkel	ry	0 mrad @)
Moment	Mz	0 Nr	m C) Kippwinkel	rz	0 mrad @)

Für jede Koordinatenrichtung kann je nach Bedarf <u>eine Kraft oder ein Weg</u> (ux) eingegeben werden (Bild 49). Soll der Ring mit welchem vorgespannt wird, an unserem Schrägkugellagers so wie angenommen festgehalten werden, kann die Verschiebung in axialer Richtung (ux) auf null gesetzt werden und es wird über die vektorielle Aufteilung in Funktion des Druckwinkels die Reaktionskraft in axialer Richtung (Fx) berechnet.

Eine Momentbelastung oder eine Verkippung kann nur für zwei Richtungen eingegeben werden, da die Drehung um die Lagerachse (X) nicht eingeschränkt werden kann.

4.8 Berechnung von Stützrollen

Sollten Sie eine Lizenz für die Berechnung von 'Stützrollen' erworben haben und an Schulung für diese Extension interessiert sein, möchten wir Sie auffordern mit uns <u>Kontakt</u> aufzunehmen. Detaillierte Informationen dazu finden sich im <u>Handbuch</u> unter Kapitel 3.1.8. Insofern überspringen wir im Rahmen dieses Tutorials die Inhalte unter dem Reiter 'Stützrollen'.

Bild 16

Rild 49

5. Auslegung 5.1 Methodologie

Die erfolgreiche Auslegung eines Wälzlagers folgt einer bewährten Methodologie. Die MESYS Wälzlagerberechnung bietet hierbei entscheidende Unterstützung und übernimmt einen Grossteil der notwendigen Aufgaben. Im Folgenden möchten wir gemeinsam einige der wichtigsten Schritte durchgehen.

5.2 Passung

5.2.1 Protokoll Toleranzen

Das <u>Protokoll Toleranzen</u> hat gezeigt, dass Passungen für Ziel-Überdeckungen mit MESYS sehr schnell gefunden werden können. Nun liegt es auf der Hand, dass niemand für Welle ein Nennmass von $\cancel{0}$ +5.5028 µm gemäss Kapitel <u>4.4.8.2</u> fertigt und dass weitere beeinflussende Grössen das reale Ist-Übermass bewirken. Des Weiteren haben auch Lagerdurchmesser definierte Toleranzfelder.

5.2.2 Toleranz & Rauheit

Bitte vergeben Sie dem Schrägkugellager 7208B eine Toleranzklasse P5.

Toleranz des Lagers ISO 492 - P5 🗸

R₇

Rz

6

Bitte vergeben Sie eine Rauheit für Welle und Bohrung von Rz = 6.

Bitte runden Sie das <u>aktuelle</u> <u>Soll-Übermass</u> kalt und vergeben Sie der Welle für die Durchmessertoleranz ein ISO-Klasse IT6 (16 μm) und dem Gehäuse ein solches von IT7 (35 μm).

🔞 Toleranz Welle X	🔞 Toleranz Gehäuse 🛛 🗙
🗹 Eigene Eingabe für Toleranz Welle	☑ Eigene Eingabe für Toleranz Gehäuse
Oberes Abmass für Welle tolShaft_e 0.019 mm	Oberes Abmass für Gehäuse tolHousing_e 0.01 mm
Unteres Abmass für Welle tolShaft_i 0.003 mm	Unteres Abmass für Gehäuse tolHousing_i -0.025 mm
OK Abbrechen	OK Abbrechen

Oberflächenrauheit der Welle

Oberflächenrauheit Gehäuse

Bild 50

μm

μm

Das Protokoll Toleranzen daraus:

Eigenschaften für unterschiedliches Spiel		Minimum	Minimum erwartet	Mittelwert	Maximum erwartet	Maximum	Einheit
Nominales axiales Lagerspiel	Pa	-3.04	-3.04	-3.04	-3.04	-3.04	μm
Toleranz Welle	∆ds	19.00	16.96	11.00	5.04	3.00	μm
Toleranz Lagerinnenring	∆d	-8.00	-6.98	-4.00	-1.02	0.00	μm
Übermass Innenring	lw_i	24.60	21.54	12.60	3.66	0.60	μm
Effektives Übermass Innenring	lw_iop	24.10	21.04	12.10	3.15	0.10	μm
Toleranz Gehäuse	ΔDh	-25.00	-21.87	-7.50	6.87	10.00	μm
Übermass Aussenring	lw_e	22.60	18.67	0.60	-17.47	-21.40	μm
Effektives Übermass Aussenring	lw_eop	22.60	18.67	0.60	-17.47	-21.40	μm

Tabelle 2

Das Effektive Übermass Innenring unter Maximum deckt mit 0.1 μm den schlechtesten Fall gerade noch positiv.

Das Effektive Übermass Aussenring ist im Mittelwert mit 0.6 µm praktisch kompensiert.

5.2.3 ISO Passung

 Bitte ändern Sie f
ür eine bessere industrielle Darstellbarkeit die Passung zur Welle auf k6 und diejenige der Bohrung auf K7 (Bild 51).

						Bild 51
Passung zur Welle	k6		Passung zum G	ehäuse	K7	4
Oberflächenrauheit der We	🔞 Toleranz Welle	\times	Oberflächenrau	🔞 Toleranz Gehäuse		×
Innendurchmesser der Wei	Eigene Eingabe für Toleranz Welle	,	Aussendurchm	📃 Eigene Eingabe für Toleranz G	ehäuse	
Passung zum Gehäuse	Oberes Abmass für Welle tolShaft_e 0.0	018 mm		Oberes Abmass für Gehäuse toll	Housing_e 0.009	mm
Oberflächenrauheit Gehäu	Unteres Abmass für Welle tolShaft_i 0.0	002 mm		Unteres Abmass für Gehäuse tol	Housing_i -0.021	mm
Aussendurchmesser Gehäu	OK	Abbrechen			ОК	Abbrechen

Durch obige Anpassungen an die Anwendungsbedingungen, hat sich die Axialkraft vormals 991.504 N auf 1448.64 N erhöht:

Axialkraft Fx 1448.64 N O Verschiebung ux 0 µm	۲
--	---

5.2.4 Temperaturgefälle

Gehen wir in unserem Beispiel davon aus, dass man die Temperaturen am Innenring und am Aussenring messen, oder qualitativ abschätzen konnte:

 Bitte vergeben Sie f
ür die Temperatur am Innenring 40 und am Aussenring 32°C und starten Sie die Berechnung.

Temperatur Innenring Ti	40	°C	Temperatur Aussenring	Te	32] °C
-------------------------	----	----	-----------------------	----	----	------

Die resultierende Axialkraft ist mit dem abgebilde-

ten Temperaturgefälle nun auf 2'321.73N gestie-

gen. Dies könnte bedeuten, dass eine Aufweitung der Ringe damit eine substantielle Relevanz erhält.

Axialkraft

5.2.5 Elastische Aufweitung der Ringe

Bitte weisen Sie dem Lager unter dem Reiter 'Allgemein' die <u>Elastische Aufweitung</u> unter mittlerer Radialkraft zu (Bild 52).

Elastische Aufweitung der Ringe auf Basis der mittleren Radialkraft	
Elastische Aufweitung der Ringe auf Basis der minimalen Radialkraft	
Elastische Aufweitung der Ringe wird nicht berücksichtigt	
Elastische Aufweitung der Ringe wird nicht berücksichtigt	~
Floreting has Aufour Descention of the back to be balled at the	

Bild 52

Ν

2321.73

Fx

Der nachfolgende Berechnungsschritt zeigt, dass die Axialkraft sich damit nachvollziehbar wieder gesenkt hat.

Bitte entnehmen Sie dem <u>Handbuch</u> Kapitel 3.1.1.17 detaillierte Informationen zu Elastische Aufweitung der Ringe.

Das aktuelle Protokoll Toleranzen aus den vorangegangenen Einstellungen (Tabelle 3):

							Tabelle 3
Eigenschaften für unterschiedliches Spiel		Minimum	Minimum erwartet	Mittelwert	Maximum erwartet	Maximum	Einheit
Nominales axiales Lagerspiel	Pa	-3.04	-3.04	-3.04	-3.04	-3.04	μm
Toleranz Welle	∆ds	18.00	15.96	10.00	4.04	2.00	μm
Toleranz Lagerinnenring	Δd	-8.00	-6.98	-4.00	-1.02	0.00	μm
Übermass Innenring	lw_i	23.60	20.54	11.60	2.66	-0.40	μm
Effektives Übermass Innenring	lw_iop	24.11	21.05	12.11	3.16	0.10	μm
Toleranz Lageraussenring	ΔD	0.00	-0.89	-4.50	-8.11	-9.00	μm
Toleranz Gehäuse	ΔDh	-21.00	-18.05	-6.00	6.05	9.00	μm
Übermass Aussenring	lw_e	18.60	14.76	-0.90	-16.56	-20.40	μm
Effektives Übermass Aussenring	lw_eop	20.55	16.71	1.05	-14.62	-18.46	μm

Restüberdeckung an Welle (Iw_iop) unter 'Maximum' ist auch in 'schlechtester' Toleranzsumme positiv.

Das <u>effektive Übermass Aussenring (Iw_eop)</u> ist im 'Mittelwert' praktisch kompensiert. Eine Verschiebbarkeit wie etwa bei einem Loslager gefordert, ist damit nicht gegeben.

								Tabelle 4
Effektives diametrales Lagerspiel	Pdeff	\sum	171.27	176.20	193.50	201.34	203.79	μm
Effektives axiales Lagerspiel	Paeff	\sum	-26.47	-23.13	-11.90	-7.04	-5.56	μm
Effektiver freier Druckwinkel	α0eff	\sum	36.16	36.70	38.53	39.33	39.58	•

Das <u>effektive axiale Lagerspiel (Paeff)</u> im 'Mittelwert' hat substantiell abgenommen gegenüber den anfänglichem unmontiertem Pa von -3.03731 μ m aus Kapitel <u>4.4.7.4</u> (Tabelle 4).

Wichtig wäre an dieser Stelle auch zu erwähnen, dass ein direkter Zusammenhang zwischen <u>Effektivem freiem</u> <u>Druckwinkel</u> (α0eff) und <u>Effektivem diametralem Lagerspiel</u> (Pdeff) besteht. Kleine Nenn-Druckwinkel ergeben nach allen Einflüssen noch kleinere effektive freie Druckwinkel und können zur Kompensation des diametralen Lagerspiels (Scheitel-Radialluft) führen. Ein Wert von 171.27 µm wie hier im schlechtesten Fall (Minimum) ausgegeben, ist aber in keiner Weise Grund für ein solches Risiko.

5.2.6 Temperaturgradient

Es darf mit Bezug Kapitel <u>5.2.4</u> darauf hingewiesen werden, dass Lagersitze oft in der Nähe einer Wärmequelle, wie etwa eines Rotors positioniert werden. Dies kann die Wellentemperatur höher ausfallen lassen als die aktuelle Innenring-Temperatur, welche auch durch eine Ölschmierung bedingt, ständig um einen Betrag tiefer liegt.

Ebenso kann durch eine Gehäusekühlung, diese Temperatur kälter ausfallen als am Lager-Aussenring.

MESYS bietet die Möglichkeit, dies mittels 'Temperaturgradient in Passungen' zu berücksichtigen. Sehen Sie dazu unter Reiter 'Allgemein':

Temperaturgradient in Passungen berücksichtigen

Bitte entnehmen Sie dem <u>Handbuch</u> Kapitel 3.1.1.7 detaillierte Informationen zu Berücksichtigung von Temperaturgradienten.

5.3 Montage / Demontage

Das 'Protokoll Toleranzen' gibt Einsicht in einen potentiellen Bedarf an Induktionsgeräten für die Montage (Aufziehen) der Lager und somit auch auf zu erwartende Belastungen bei einer hypothetischen Demontage (Tabelle 5):

Eigenschaften für unterschiedliches Spiel		Minimum	Minimum erwartet	Mittelwert	Maximum erwartet	Maximum	Einheit
Montagekraft Innenring (µfit=0.1)	Ffit_i	4567.5	3988.0	2292.5	598.1	19.5	N
Montagekraft Aussenring (µfit=0.1)	Ffit_e	1838.7	1494.9	93.5	0.0	0.0	Tabelle 5

5.4 Belastung

5.4.1 Allgemein

Die aus Arbeitsschritten, Gewichts- oder dynamischen Effekten stammenden Belastungen müssen eingegeben werden. Hierzu gibt MESYS Wälzlagerberechnung die Möglichkeit, nebst einer Bewertung unter stationären Zuständen wie unter dem Reiter 'Belastung', auch eine Betrachtung unter Lastkollektiv.

5.4.2 Tragzahl

Für eine <u>Bestimmung der Lagergrössen nach der Lebensdauer</u> oder der <u>Tragfähigkeit</u> bietet die Software die nominelle und modifizierte Lebensdauer nach ISO 281 / 16281 und statische Sicherheitsfaktoren nach ISO 76, resp. ISO 17956. Eine unmittelbare Bewertung bietet die Resultateübersicht im unteren Teil des Bildschirms (Bild 54):

Bitte geben Sie unter dem Reiter '<u>Belastung</u>' eine Radialkraft in Fy von Radialkraft Fy 2000

2000 N ein.

Ν

			Bild 54
Resultateübersicht			Ð
Modifizierte Referenzlebensdauer	Lnmrh 13294.7 h Maxi	imale Pressung	pmax 1817.45 MPa
Statischer Sicherheitsfaktor	SF 12.3413 Statis	scher Sicherheitsfaktor (ISO 17956)	S0eff 12.1043
Äquivalente Belastung	Pref 2085.4 N Visko	ositätsverhältnis	к 2.33965
Effektives diametrales Lagerspiel	Pdeff 0.193858 mm Effek	ctives axiales Lagerspiel	Paeff -0.0116741 mm

Über maximale Pressung und statischem Sicherheitsfaktor ist keine Überlast erkennbar (Bild 54).

5.4.3 Lastkollektiv

Eine Untersuchung des Lagerverhaltens mittels eines Lastkollektives kann weitere wichtige Erkenntnisse liefern:

\diamond	Bitte aktivieren Sie das Kästchen	'Lastkollektiv verwenden'	unter dem Reiter	🗹 Lastkollektiv verwenden
	'Allgemein'.			

Die Eingabefelder unter Reiter 'Belastung' erscheinen nun als Eingabetabelle (Bild 55).

Α	Allgemein Wälzlagergeometrie			ein Wälzlagergeometrie Lagerkonfiguration Werkstoff und Schmieru				rung	Belastung	Stützi	rollen		
		Häufigkeit	ux [mm]	Fy [N]	Fz [N]	ry [mrad]	rz [mrad]	ni [rpm]	ne [rpm]	T_i [°C]	T_e [°C]	TOil [°C]	
	1	0.5	0	1500	0	0	0	4000	0	40	32	60	
	2	0.5	0	1500	0	0	0	8000	0	42	32	70	

Bild 55

Bitte geben Sie die Werte im Rahmen des laufenden Beispiels wie oben (Bild 55) abgebildet ein, indem Sie über die 🛟 - Schaltfläche unten rechts Zeilen aktivieren.

Die gemeinsamen Werte aus dem Lastkollektiv erscheinen nun im Resultateübersicht mit dem Vorsetzzeichen 'LS' (Bild 56):

					Blid 56
Resultateübersicht					Ð
Längenverhältnis Druckellipse Innenring	eLR_i 157.929 %	Maximale Differenz der Druckwinkel	Δα 7.26839	 Maximale Pressung 	LS_pmax 1682.23 MPa
Maximum Bohr- zu Roll-Verhältnis LS_maxS	SpinToRo 0.360434	Minimale Pressung	LS_pmin 545.57	MPa Modifizierte Referenzlebensdauer	LS_Lnmrh 43838.2 h
Statischer Sicherheitsfaktor (ISO 76)	LS_S0 13.5625	Statischer Sicherheitsfaktor	LS_SF 15.563	Viskositätsverhältnis	к 2.2859

Die restlichen Werte stehen dort für das in der Eingabemaske unten vorgewählte Lastkollektiv-Element:

zur Last 🗌 Aussenring rotiert zur Last Resultate für Nr 📘 🗦

5.4.4 Parametervariation

Über den Menüpunkt 'Berechnung'/'Parametervariation' (<u>4.4.8.4</u>) wird ein Dialog für Parametervariationen angezeigt (Bild 57). Er ermöglicht es dem Anwender, Parameterstudien durchzuführen, deren Ergebnisse in Tabellen und Grafiken dargestellt werden. Typische Anwendungen sind z.B. die Visualisierung von Lebensdauer über Spiel oder Verschiebungen über Last. Eine optionale Optimierung für einen Parameter ist ebenfalls verfügbar. Siehe für weiterführende Informationen zu Parametervariation das <u>Handbuch</u> Kapitel 1.6.

Bitte erstellen Sie als Beispiel das Diagramm Lnmrh Lebensdauer und pmin über axialem Lagerspiel.

F

rierte Ref 10000

Modifiz

2000

5000

Ĕ

10.0

5

Liste erzeugen Optimierung Parameterliste

S Lnmrł

E

X-Wert Pa ~ Y-Wert LS_Lnmrh

60 5

Nominales axiales Lagerspiel [mm]

Grafik 2

Einstellunge

 \sim

👍 🗌 Im Protokoll anzeig

1200

1100

1000 900

800

700

600

800

Grafik 1

Y2-Wert LS_pmin

Nominales axiales Lagerspiel [mm]

Bild 61

6. Resultate 6.1 Protokolle

Resultate sind in verschiedenen Ausgaben verfügbar. Es steht die Standard-Resultateü am unteren Rand der Benutzeroberfläch Kapitel 4.4.8.6 bereits erwähnt immer a siert zur Verfügung.

Ein Haupt-Protokoll als PDF oder DOC Standard-Inhalt sowie mittels 'Protokol

onen' zu-steuerbaren weiteren Inhalten sind über Menü 'Protokoll' abrufbar.

	Resoluteopersienc				-
tateübersicht	Referenzlebensdauer	L10r 234185	Referenzlebensdauer	L10rh 487885	h
6 1 1 1 1 1 1	Modifizierte Referenzlebensdauer	Lnmr 1.171e+07	Modifizierte Referenzlebensdauer	Lnmrh 2.439e+07	h
rfläche wie in	Maximale Pressung	pmax 923.627 MP	a Statischer Sicherheitsfaktor	SF 94.0283	
nor aktuali.	Statischer Sicherheitsfaktor	S0eff 79.4024	Äquivalente Belastung	Pref 456.785	N
	Längenverhältnis Druckellipse Innenring	eLR i 208.571 %	Längenverhältnis Druckellipse Aussenring	eLR e 256.701	L%
	MOCILC	MESYS Wälzlagerberechnu	ng 12-2024		mm
		Dateiname:	C:/Users/ Tutorials/2024/Beginner/Basics/RBC/Basi Calculation_6.mRBC	ics Beginner Tutorial	• mm
DOCX mit		Projektname:	Beginners Tutorial		
tokoll Onti-		Beschreibung:	Erste Ergebnisse		
		Datum:	Thursday, 16. January 2025		
🔞 Protokoll Optionen					×
Bitte wählen Sie den Umfan	g des Protokolls aus:				
Grafik: Lastverteilung		🗹 Grafik: Las	tverteilung 2D		
🗹 Grafik: Pressungsverteilu	ing	🗹 Grafik: Dr	uckwinkel		

Unter Menü 'Protokoll'/'Resultattabellen' kann standardmässig eine Tabellenkalkulation mit Resultaten zur Weiterverarbeitung im XLSX-Format geöffnet werden.

Prot	okoll	Grafiken	Extras	Hilfe			А	В	С	D	E	F
	Droto	kell anasias			56	1	Load case	1				
	PIOLO	koli anzeige	n		FO	2		ux [µm]	uy [µm]	uz [µm]	ry [mrad]	rz [mrad]
۲	Proto	koll drucker	ו			3	Fx [N]	212.9289	66.52366	-1.8E-07	-2E-06	-1721.27
	Proto	koll speiche	rn als			4	Fy [N]	66.4652	163.428	-1.6E-07	-1.5E-06	-3929.03
663	Proto	koll Ontion	en			5	Fz [N]	-2.1E-07	1.55E-08	184.1099	4475.018	3.53E-06
000						6	My [Nm]	-5.1E-09	3.5E-10	4.473138	114.6083	8.76E-08
	Proto	kollvorlager	ו			7	Mz [Nm]	-1.72216	-3.92524	3.79E-09	3.6E-08	100.9723
	Proto	koll in Sprac	he speic:	hern	- 	8	Load case:	2				
	· · · ·					9		ux [µm]	uy [µm]	uz [µm]	ry [mrad]	rz [mrad]
	spezia	aiprotokoli s	peicnerr	1 als	•	10	Fx [N]	217.7691	61.28462	-5.5E-09	2.42E-07	-1551.14
	Proto	koll Toleran:	zen			11	Fy [N]	61.02589	158.7982	1.75E-07	-3.1E-06	-3846.97
	Result	tatetabellen		_			Fz [N]	1.86E-07	-1.2E-07	170.2751	4152.423	3.61E-07
						13	My [Nm]	4.68E-09	-2.9E-09	4.145374	106.8561	1.32E-08
Bild 63						14	Mz [Nm]	-1.55158	-3.83722	-4.5E-09	8.02E-08	99.20982

6.2 Grafiken

Unter dem Menü 'Grafiken' "stehen eine breite Palette an grafischen Darstellungen 2D, 3D, Funktionen mit Bezügen zu Verformung, Lastverteilung, Kinematik, Verschleissgrössen, Schubspannung oder Lebensdauer zur Verfügung.

Datei Berechnung Protokoll	Grafiken Extras Hilfe					
🗋 늘 💾 🚳 🔍 🖢	Lastkollektiv					
	Verformung der Lagerringe					
Allgemein Wälzlagergeome	Lagerkonfiguration					
MOCI	Lastverteilung					
11620	Lastverteilung (Lastkollektiv)					
Engineering Consulting Software AG	Lastverteilung 2D					
Projektname Beginners Tu	Lastverteilung 2D (Lastkollektiv)					
Pasahasihung Erste Ersehn	Lastverteilung 3D					
Eiste Eigebn	Lastverteilung 3D (ohne Ringe)					
Einstellungen	Pressungsverteilung					
Zuverlässigkeit	Druckwinkel					
Grenzwert für alSO	Bohr- zu Roll-Verhältnis					
	Maximale Spaltweite Kugel-Laufbahn					
Reibwert	Kugelumlaufgeschwindigkeit					
Schmierfilmdicke berechn	Kugelvor-/nachlauf					
Fliehkraft berücksichtigen	Gyroskopischer Schlupfkoeffizient					
	Verschleissgrösse QV					
Iemperaturgradient in Pas	Verschleissgrösse PVmax					
Oszillierendes Lager	Verschleisskenngrösse PV über grösserer Halbachse					
Erforderliche Einhärtetiefe	Pressung und Gleitgeschwindigkeit auf grösserer Halbachse					
Erforderliche Einhärtetiefe	Wärmeleitwert					
Erforderliche Sicherheit für Ein	Wälzkörperkräfte					
Enordeniche Sichemeit für Eil	Zuverlässigkeit					
	Schubspannungsverlauf					
lesultateübersicht	Orthogonale Schubspannung (Innenring, kleinere Halbachse)					
	Orthogonale Schubspannung (Aussenring, kleinere Halbachse)					
Referenzlebensdauer	Orthogonale Schubspannung über Tiefe					
Maximale Pressung	Orthogonale Schubspannung über kleinere Halbachse					
Statischer Sicherheitsfaktor	Kontaktabmessungen					
längenverhältnis Druckellinge Inn	Lebensdauer über Last					
cangenvernations bruckempse min	Verschiebungen über Last					
Ausdehnung der Druckellipse Inn	Kippwinkel über Last					
Viskositätsverhältnis	Grenzlastdiagramm					
Effektives diametrales Lagerspiel	Verformung der Lagerringe					
J	Ergebnisse für Presssitz					
	Radiale Aufweitung der Laufbahnen					

Bild 64

Die Grafiken können die entsprechenden Ausgaben an die Hauptprogramm-Oberfläche angedockt werden und sind nach jeder Berechnung automatisch aktualisiert.

Bild 65

6.3 Weitere Resultate

Aufgrund der Eingrenzung dieses Tutorials möchten wir die weiteren Resultate wie Fettgebrauchsdauer unter Menü Berechnungen, Werkstoffe und deren Berechnung mit Bezug der Wärmebehandlung, Resultate rund um Schmierzustände, Lager-Konfigurationen, oszillierende Lager, Bewertung der Druckellipsen, Betrachtung unter minimalem, mittleren und maximalem Spiel, Wirkung von Kreiselmomente und Vieles mehr lediglich mit dem Verweis auf das Handbuch erwähnen.

6.4 Protokolle

Das Standard-Protokoll lässt sich mit umfangreichen Inhalten über 'Protokoll Optionen' spezifisch editieren. Des Weiteren lässt sich das Protokoll in den verfügbaren Sprachen gesondert abspeichern. Es gibt die Möglichkeit, Protokollvorlagen zu ergänzen und nicht zu vergessen, das in diesem Rahmen bereits verwendete Protokoll Toleranzen.

Dateiname

Projektname:

Beschreibung

Datum

MESYS Wälzlagerberechnung 12-2024

C:/Users/

Calculation 6.mRB0

Beginners Tutorial

Thursday, 16, January 2025

Erste Ergebnisse

koll aus.

Bild 67

Wälzlagerberechnung

MESYS wünscht Ihnen eine lehrreiche und gewinnbringende Erfahrung mit unseren Tutorials. Bitte wenden Sie sich ungehindert bei Unklarheiten, Anregungen oder Fragen, an info@mesys.ch.